Skip to main content

Earthquake Mechanism and Seafloor Deformation for Tsunami Generation

  • Living reference work entry
  • First Online:
Encyclopedia of Earthquake Engineering

Synonyms

Seismogenic tsunami; Tsunami forcing; Tsunami initial conditions; Tsunamigenic

Introduction

Tsunamis are generated in the ocean by rapidly displacing the entire water column over a significant area. The potential energy resulting from this disturbance is balanced with the kinetic energy of the waves during propagation. Only a handful of submarine geologic phenomena can generate tsunamis: large-magnitude earthquakes, large landslides, and volcanic processes. Asteroid and subaerial landslide impacts can generate tsunami waves from above the water. Earthquakes are by far the most common generator of tsunamis. Generally, earthquakes greater than magnitude (M) 6.5–7 can generate tsunamis if they occur beneath an ocean and if they result in predominantly vertical displacement. One of the greatest uncertainties in both deterministic and probabilistic hazard assessments of tsunamis is computing seafloor deformation for earthquakes of a given magnitude. This entry reviews past...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abe K (1973) Tsunami and mechanism of great earthquakes. Phys Earth Planet In 7:143–153

    Article  Google Scholar 

  • Andrews DJ (1976) Rupture velocity of plane strain shear cracks. J Geophys Res 81:5679–5687

    Article  Google Scholar 

  • Andrews DJ (1980) A stochastic fault model 1. Static case. J Geophys Res 85:3867–3877

    Article  Google Scholar 

  • Baba T, Hori T, Hirano S, Cummins PR, Park J-O, Kameyama M, Kaneda Y (2001) Deformation of a seamount subducting beneath an accretionary prism: constraints from numerical simulation. Geophys Res Lett 28:1827–1830

    Article  Google Scholar 

  • Bilby BA, Eshelby JD (1969) Dislocations and the theory of fracture. In: Liebowitz H (ed) Fracture. Academic, New York, pp 99–182

    Google Scholar 

  • Bird P (2003) An updated digital model of plate boundaries. Geochem Geophys Geosyst 4. doi:10.1029/2001/GC000252

    Google Scholar 

  • Blaser L, Krüger F, Ohrnberger M, Scherbaum F (2010) Scaling relations of earthquake source parameter estimates with special focus on subduction environment. Bull Seismol Soc Am 100:2914–2926

    Article  Google Scholar 

  • Brune JN (1996) Particle motions in a physical model of shallow angle thrust faulting. Proc Indian Acad Sci 105:L197–L206

    Google Scholar 

  • Chambon G, Rudnicki JW (2001) Effects of normal stress variations on frictional stability of a fluid-infiltrated fault. J Geophys Res 106:11353–311372

    Article  Google Scholar 

  • Das S (1981) Three-dimensional spontaneous rupture propagation and implications for the earthquake source mechanism. Geophys J Roy Astron Soc 67:375–393

    Article  Google Scholar 

  • Day SM (1982) Three-dimensional simulation of spontaneous rupture: the effect of nonuniform prestress. Bull Seismol Soc Am 72:1881–1902

    Google Scholar 

  • Dmowska R, Kostrov BV (1973) A shearing crack in a semi-space under plane strain conditions. Arch Mech 25:421–440

    MathSciNet  MATH  Google Scholar 

  • Eshelby JD (1957) The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc R Soc Lond A Math Phys Sci 241:376–396

    Article  MathSciNet  MATH  Google Scholar 

  • Freund LB, Barnett DM (1976) A two-dimensional analysis of surface deformation due to dip-slip faulting. Bull Seismol Soc Am 66:667–675

    Google Scholar 

  • Fukao Y, Furumoto M (1975) Mechanism of large earthquakes along the eastern margin of the Japan Sea. Tectonophys 25:247–266

    Article  Google Scholar 

  • Geist EL (1999) Local tsunamis and earthquake source parameters. Adv Geophys 39:117–209

    Article  Google Scholar 

  • Geist EL, Bilek SL (2001) Effect of depth-dependent shear modulus on tsunami generation along subduction zones. Geophys Res Lett 28(7):1315–1318

    Article  Google Scholar 

  • Geist EL, Dmowska R (1999) Local tsunamis and distributed slip at the source. Pure Appl Geophys 154:485–512

    Article  Google Scholar 

  • Geist EL, Yoshioka S (1996) Source parameters controlling the generation and propagation of potential local tsunamis along the Cascadia margin. Nat Hazards 13:151–177

    Article  Google Scholar 

  • Geist EL, Yoshioka S (2004) Effect of structural heterogeneity and slip distribution on coseismic vertical displacement from rupture on the seattle fault. Open-File Report 2004–1010 Rep 2004–1010, U.S. Geological Survey

    Google Scholar 

  • Geist EL, Titov VV, Arcas D, Pollitz FF, Bilek SL (2007) Implications of the December 26, 2004 Sumatra-Andaman earthquake on tsunami forecast and assessment models for great subduction zone earthquakes. Bull Seismol Soc Am 97:S249–S270

    Article  Google Scholar 

  • Geller RJ (1976) Scaling relations for earthquake source parameters and magnitudes. Bull Seismol Soc Am 66:1501–1523

    Google Scholar 

  • Harris RA, Archuleta RJ, Day SM (1991) Fault steps and the dynamic rupture process – 2-D numerical simulations of a spontaneously propagating shear fracture. Geophys Res Lett 18(5):893–896

    Article  Google Scholar 

  • Kajiura K (1963) The leading wave of a tsunami. Bull Earthq Res Inst 41:535–571

    Google Scholar 

  • Kanamori H (1972) Mechanism of tsunami earthquakes. Phys Earth Planet In 6:346–359

    Article  Google Scholar 

  • Kozdon JE, Dunham EM (2013) Rupture to the trench: dynamic rupture simulations of the 11 march 2011 Tohoku Earthquake. Bull Seismol Soc Am 103(2B):1275–1289

    Article  Google Scholar 

  • Lavallée D, Liu P, Archuleta RJ (2006) Stochastic model of heterogeneity in earthquake slip spatial distributions. Geophys J Int 165:622–640

    Article  Google Scholar 

  • Ma S, Hirakawa ET (2013) Dynamic wedge failure reveals anomalous energy radiation of shallow subduction earthquakes. Earth Planet Sci Lett 375:113–122, 110.1016/j.epsl.2013.1005.1016

    Article  Google Scholar 

  • Ma XQ, Kusznir NJ (1994) Effects of rigidity layering, gravity and stress relaxation on 2-D subsurface fault displacement fields. Geophys J Int 118:201–220

    Article  Google Scholar 

  • Madariaga R (1979) On the relation between seismic moment and stress drop in the presence of stress and strength heterogeneity. J Geophys Res 84:2243–2250

    Article  Google Scholar 

  • Masterlark T (2003) Finite element model predictions of static deformation from dislocation sources in a subduction zone: sensitivities to homogeneous, isotropic, Poisson-solid, and half-space assumptions. J Geophys Res 103. doi:10.1029/2002JB002296

    Google Scholar 

  • Noda H, Lapusta N (2013) Stable creeping fault segments can become destructive as a result of dynamic weakening. Nature. doi:10.1038/nature11703

    Google Scholar 

  • Oglesby DD (1999) Earthquake dynamics on dip-slip faults. PhD thesis, University of California, Santa Barbara, 223 pp

    Google Scholar 

  • Oglesby DD, Archuleta RJ (2000) Dynamics of dip-slip faulting: explorations in two dimensions. J Geophys Res 105(13):643–613653

    Google Scholar 

  • Oglesby DD, Archuleta RJ, Nielsen SB (1998) Earthquakes on dipping faults: the effects of broken symmetry. Science 280:1055–1059

    Article  Google Scholar 

  • Oglesby DD, Archuleta RJ, Nielsen SB (2000) The three-dimensional dynamics of dipping faults. Bull Seismol Soc Am 90:616–628

    Article  Google Scholar 

  • Okada Y (1985) Surface deformation due to shear and tensile faults in a half-space. Bull Seismol Soc Am 75:1135–1154

    Google Scholar 

  • Okada Y (1992) Internal deformation due to shear and tensile faults in half-space. Bull Seismol Soc Am 82:1018–1040

    Google Scholar 

  • Okal EA (1988) Seismic parameters controlling far-field tsunami amplitudes: a review. Nat Hazards 1:67–96

    Article  Google Scholar 

  • Okubo PG (1989) Dynamic rupture modeling with laboratory-derived constitutive relations. J Geophys Res 94:12321–12335

    Article  Google Scholar 

  • Pollitz FF (1996) Coseismic deformation from earthquake faulting on a layered spherical earth. Geophys J Int 125:1–14

    Article  Google Scholar 

  • Roering JJ, Cooke ML, Pollard DD (1997) Why blind thrust faults do not propagate to the Earth’s surface: numerical modeling of coseismic deformation associated with thrust-related anticlines. J Geophys Res 102:11901–911912

    Article  Google Scholar 

  • Rudnicki JW, Wu M (1995) Mechanics of dip-slip faulting in an elastic half-space. J Geophys Res 100:22173–22186

    Article  Google Scholar 

  • Rybicki R (1986) Dislocations and their geophysical application. In: Teisseyre R (ed) Continuum theories in solid earth physics. Elsevier, Amsterdam, pp 18–186

    Google Scholar 

  • Satake K, Kanamori H (1991) Use of tsunami waveforms for earthquake source study. Nat Hazards 4:193–208

    Article  Google Scholar 

  • Savage JC (1998) Displacement field for an edge dislocation in a layered half-space. J Geophys Res 103:2439–2446

    Article  Google Scholar 

  • Savage JC, Hastie LM (1966) Surface deformation associated with dip-slip faulting. J Geophys Res 20:4897–4904

    Article  Google Scholar 

  • Segall P (2010) Earthquake and volcano deformation. Princeton University Press, Princeton

    MATH  Google Scholar 

  • Tanioka Y, Satake K (1996) Tsunami generation by horizontal displacement of ocean bottom. Geophys Res Lett 23:861–865

    Article  Google Scholar 

  • Wang K, He J (2008) Effects of frictional behavior and geometry of subduction fault on coseismic seafloor deformation. Bull Seismol Soc Am 98:571–579

    Article  Google Scholar 

  • Ward SN (1980) Relationships of tsunami generation and an earthquake source. J Phys Earth 28:441–474

    Article  Google Scholar 

  • Wendt J, Oglesby DD, Geist EL (2009) Tsunamis and splay fault dynamics. Geophys Res Lett 36, L15303, 15310.11029/12009GL038295

    Article  Google Scholar 

  • Whirley RG, Engelmann BE (1993) DYNA3D: a nonlinear, explicit, three-dimensional finite element code for solid and structural mechanics – user manual. University of California, Lawrence Livermore National Laboratory, California

    Google Scholar 

  • Zhao S, Müller RD, Takahashi Y, Kaneda Y (2004) 3-D finite-element modeling of deformation and stress associated with faulting: effect of inhomogeneous crustal structures. Geophys J Int 157:629–644

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric L. Geist .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg (outside the USA)

About this entry

Cite this entry

Geist, E.L., Oglesby, D.D. (2014). Earthquake Mechanism and Seafloor Deformation for Tsunami Generation. In: Beer, M., Kougioumtzoglou, I., Patelli, E., Au, IK. (eds) Encyclopedia of Earthquake Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36197-5_296-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36197-5_296-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-36197-5

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics