Skip to main content

Scope of Alkaloids in Antileishmanial Drug Discovery and Development

  • Reference work entry
  • First Online:
Natural Products

Abstract

Leishmaniasis, a parasitic disease resulting from infection of macrophages by obligate intracellular parasites of genus Leishmania, is prevalent in tropical and subtropical regions of 88 countries, affecting about 12 million people in the world. Leishmaniasis displays a spectrum of clinical manifestations, ranging from mucocutaneous and cutaneous lesions to visceral leishmaniasis, which is usually fatal for untreated patients. Moreover, significant increases in the rate of Leishmania-HIV coinfections across the world and cases of resistant parasites are aggravating this problem. Chemotherapy is the only effective treatment for leishmaniasis. However, the growing incidence of resistance for most of the antileishmanial drugs in endemic and nonendemic regions has seriously hampered their use in these regions. The present chapter briefly illustrates leishmaniasis epidemiology, occurrence, parasite biology, drug targets, bioavailability and metabolism, and treatment around the world and also critically discusses the key points in alkaloids-based drug discovery protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 2,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mishra BB, Singh RK, Srivastava A et al (2009) Fighting against leishmaniasis: search of alkaloids as future true potential anti-leishmanial agents. Mini Rev Med Chem 9:107–123

    Article  CAS  Google Scholar 

  2. World Health Organization (2010) Report of a meeting of WHO expert committee; Report: Control of the Leishmaniasis, Geneva. Available at: http://whqlibdoc.who.int/trs/WHO_TRS_949_eng.pdf. Accessed 22–26 March 2010

  3. Desjeux P (2001) The increase in risk factors for leishmaniasis worldwide. Trans R Soc Trop Med Hyg 95:239–243

    Article  CAS  Google Scholar 

  4. Mishra BB, Kale RR, Singh RK et al (2009) Alkaloids: future prospective to combat leishmaniasis. Fitoterapia 80:81–90

    Article  CAS  Google Scholar 

  5. Desjeux P (1992) Human leishmaniasis: epidemiology and public health aspects. World Health Stat Q 45:267–275

    CAS  Google Scholar 

  6. Bora D (1999) Epidemiology of visceral leishmaniasis in India. Natl Med J India 12:62–68

    CAS  Google Scholar 

  7. Magill AJ (1995) Epidemiology of leishmaniasis. Dermatol Clin 13:505–523

    CAS  Google Scholar 

  8. Zijlstra EE, el-Hassan AM, Ismael A (1995) Endemic kala-azar in eastern Sudan: post-kala-azar dermal leishmaniasis. Am J Trop Med Hyg 52:299–305

    CAS  Google Scholar 

  9. Cruz I, Nieto J, Moreno J et al (2006) Leishmania/HIV co-infections in the second decade. Indian J Med Res 123:357–388

    Google Scholar 

  10. Mathur P, Samantaray JC, Vajpayee M et al (2006) Visceral leishmaniasis/human immunodeficiency virus co-infection in India: the focus of two epidemics. J Med Microbiol 55:919–922

    Article  Google Scholar 

  11. Desjeux P, Alvar J (2003) Leishmania/HIV co-infections: epidemiology in Europe. Ann Trop Med Parasitol 97:S3–S15

    Article  Google Scholar 

  12. McConville MJ, Souza D, Saunders E et al (2007) Living in a phagolysosome; metabolism of Leishmania amastigotes. Trends Parasitol 23:368–375

    Article  CAS  Google Scholar 

  13. Saraiva EM, Pinto-Da-Silva LH, Wanderley JLM et al (2005) Flow cytometric assessment of Leishmania spp metacyclic differentiation: validation by morphological features and specific markers. Exp Parasitol 110:39–47

    Article  Google Scholar 

  14. Clos J, Krobitsch S (1999) Heat shock as a regular feature of the life cycle of Leishmania parasites. Amer Zool 39:848–856

    CAS  Google Scholar 

  15. Pink R, Hudson A, Mouries MA et al (2005) Opportunities and challenges in antiparasitic drug discovery. Nat Rev Drug Discov 4:727–740

    Article  CAS  Google Scholar 

  16. Ishida K, Rodrigues JC, Ribeiro MD et al (2009) Growth inhibition and ultrastructural alterations induced by Delta24(25)-sterol methyltransferase inhibitors in Candida spp. isolates, including nonalbicans organisms. BMC Microbiol 9:74

    Article  Google Scholar 

  17. Aronov AM, Suresh S, Buckner FS et al (1999) Structure-based design of submicromolar, biologically active inhibitors of trypanosomatid glyceraldehyde-3-phosphate dehydrogenase. Proc Natl Acad Sci U S A 96:4273–4278

    Article  CAS  Google Scholar 

  18. Carter NS, Drew ME, Sanchez M et al (2000) Cloning of a novel inosine-guanosine transporter gene from Leishmania donovani by functional rescue of a transport-deficient mutant. J Biol Chem 275:20935–20941

    Article  CAS  Google Scholar 

  19. Ortiz D, Sanchez MA, Koch HP et al (2009) An acid-activated nucleobase transporter from Leishmania major. J Biol Chem 284:16164–16169

    Article  CAS  Google Scholar 

  20. Glew RH, Saha AK, Das S et al (1988) Biochemistry of the Leishmania species. Microbiol Rev 52:412–432

    CAS  Google Scholar 

  21. Fish WR, Marr JJ, Berens RL et al (1985) Inosine analogs as chemotherapeutic agents for African trypanosomes: metabolism in trypanosomes and efficacy in tissue culture. Antimicrob Agents Chemother 27:33–36

    Article  CAS  Google Scholar 

  22. Spath GF, Epstein L, Leader B et al (2000) Lipophosphoglycan is a virulence factor distinct from related glycoconjugates in the protozoan parasite Leishmania major. Proc Natl Acad Sci U S A 97:9258–9263

    Article  CAS  Google Scholar 

  23. Sacks DL, Modi G, Rowton E et al (2000) The role of phosphoglycans in Leishmania-sand flies interactions. Proc Natl Acad Sci U S A 97:406–411

    Article  CAS  Google Scholar 

  24. Urbaniak MD, Yashunsky DV, Crossman A et al (2008) Probing enzymes late in the trypanosomal glycosylphosphatidylinositol biosynthetic pathway with synthetic glycosylphosphatidylinositol analogues. ACS Chem Biol 3:625–634

    Article  CAS  Google Scholar 

  25. Mottram JC, Coombs GH, Alexander J (2004) Cysteine peptidases as virulence factors of Leishmania. Curr Opin Microbiol 7:375–381

    Article  CAS  Google Scholar 

  26. Denise H, McNeil K, Brooks DR et al (2003) Expression of multiple CPB genes encoding cysteine proteases is required for Leishmania mexicana virulence in vivo. Infect Immun 71:3190–3195

    Article  CAS  Google Scholar 

  27. Buxbaum LU, Denise H, Coombs GH et al (2003) Cysteine protease B of Leishmania mexicana inhibits host Th1 responses and protective immunity. J Immunol 171:3711–3717

    CAS  Google Scholar 

  28. Maekawa Y, Himeno K, Ishikawa H et al (1998) Switch of CD4+ T cell differentiation from Th2 to Th1 by treatment with Cathepsin B inhibitor in experimental leishmaniasis. J Immunol 161:2120–2127

    CAS  Google Scholar 

  29. Zadeh-Vakili A, Taheri T, Doustdari F et al (2004) Immunization with the hybrid protein vaccine consisting of Leishmania major cysteine proteinases Type I (CPB) and Type II (CPA), partially protects against leishmaniasis. Vaccine 22:1930–1940

    Article  CAS  Google Scholar 

  30. Hardy LW, Matthews W, Nare B et al (1997) Biochemical and genetic tests for inhibitors of Leishmania pteridine pathways. Exp Parasitol 87:157–169

    Article  CAS  Google Scholar 

  31. Padmanabhan PK, Mukherjee A, Singh S et al (2005) Glyoxalase I from Leishmania donovani: a potential target for anti-parasite drug. Biochem Biophys Res Commun 337:1237–1248

    Article  CAS  Google Scholar 

  32. Vickers TJ, Greig N, Fairlamb AH (2004) A trypanothione-dependent glyoxalase I with a prokaryotic ancestry in Leishmania major. Proc Natl Acad Sci U S A 101:13186–13191

    Article  CAS  Google Scholar 

  33. Padmanabhan PK, Mukherjee A, Madhubala R (2006) Characterization of the gene encoding glyoxalase II from Leishmania donovani: a potential target for anti-parasite drugs. Biochem J 393:227–234

    Article  CAS  Google Scholar 

  34. Das A, Dasgupta A, Sharma S et al (2001) Characterisation of the gene encoding type II DNA topoisomerase from Leishmania donovani: a key molecular target in antileishmanial therapy. Nucleic Acids Res 29:1844–1851

    Article  CAS  Google Scholar 

  35. Figgitt D, Denny W, Chavalitshewinkoon P et al (1992) In vitro study of anticancer acridines as potential antitrypanosomal and antimalarial agents. Antimicrob Agents Chemother 36:1644–1647

    Article  CAS  Google Scholar 

  36. Salem MM, Werbovetz KA (2005) Antiprotozoal compounds from Psorothamnus polydenius. J Nat Prod 68:108–111

    Article  CAS  Google Scholar 

  37. Shiba T, Mizote H, Kaneko T et al (1971) Hypusine, a new amino acid occurring in bovine brain: isolation and structural determination. Biochim Biophys Acta 244:523–531

    Article  CAS  Google Scholar 

  38. Chawla B, Jhingran A, Singh S et al (2010) Identification and characterization of a novel deoxyhypusine synthase in Leishmania donovani. J Biol Chem 285:453–463

    Article  CAS  Google Scholar 

  39. Opperdoes FR, Coombs GH (2007) Metabolism of Leishmania: proven and predicted. Trends Parasitol 23:149–158

    Article  CAS  Google Scholar 

  40. Hellemond JJ, Meer PVD, Tielens AGM (1997) Leishmania infantum promastigotes have a poor capacity for anaerobic functioning and depend mainly upon respiration for their energy generation. Parasitology 114:351–360

    Article  Google Scholar 

  41. Hellemond JJ, Tielens AG (1997) Inhibition of the respiratory chain results in a reversible metabolic arrest in Leishmania promastigotes. Mol Biochem Parasitol 85:135–138

    Article  Google Scholar 

  42. Mukkada AJ (1977) Tricarboxylic acid and glyoxylate cycles in the Leishmania. Acta Trop 34:167–175

    CAS  Google Scholar 

  43. Hart DT, Coombs GH (1982) Leishmania mexicana: energy metabolism of amastigotes and promastigotes. Exp Parasitol 54:397–409

    Article  CAS  Google Scholar 

  44. Tetley L, Vickerman K (1991) The glycosomes of trypanosomes: number and distribution as revealed by electron spectroscopic imaging and 3D reconstruction. J Microsc 162:83–90

    Article  CAS  Google Scholar 

  45. Mottram JC, Coombs GH (1985) Enzyme activities of amastigotes and promastigotes and their inhibition by antimonials and arsenicals. Exp Parasitol 59:151–160

    Article  CAS  Google Scholar 

  46. Mottram JC, Coombs GH (1985) Leishmania mexicana: subcellular distribution of enzymes in amastigotes and promastigotes. Exp Parasitol 59:265–274

    Article  CAS  Google Scholar 

  47. Sundar S, More DK, Singh MK et al (2000) Failure of pentavalent antimony in visceral leishmaniasis in India: report from the center of the Indian epidemic. Clin Infect Dis 31:1104–1107

    Article  CAS  Google Scholar 

  48. Jha TK (1983) Evaluation of diamidine compound (pentamidine isethionate) in the treatment of resistant cases of kala-azar occurring in North Bihar, India. Trans R Soc Trop Med Hyg 77:167–170

    Article  CAS  Google Scholar 

  49. Sundar S, Chatterjee M (2006) Visceral leishmaniasis-current therapeutic modalities. Indian J Med Res 123:345–352

    CAS  Google Scholar 

  50. Thakur CP, Singh RK, Hassan SM et al (1999) Amphotericin B deoxycholate treatment of visceral leishmaniasis with newer modes of administration and precautions: a study of 938 cases. Trans R Soc Trop Med Hyg 93:319

    Article  CAS  Google Scholar 

  51. Ramos H, Valdivieso E, Gamargo M et al (1996) Amphotericin B kills unicellular Leishmania by forming aqueous pores permeable to small cations and anions. J Membr Biol 152:65–75

    Article  CAS  Google Scholar 

  52. Yardley V, Croft SL (1997) Activity of liposomal amphotericin B against experimental cutaneous leishmaniasis. Antimicrob Agents Chemother 41:752–756

    CAS  Google Scholar 

  53. Lux H, Heise N, Klenner T et al (2000) Etherlipid (alkyl-phospholipid) metabolism and the mechanism of action of ether-lipid analogues in Leishmania. Mol Biochem Parasitol 111:1–14

    Article  CAS  Google Scholar 

  54. Sundar S, Jha TK, Sindermann H et al (2003) Oral miltefosine treatment in children with mild to moderate Indian visceral leishmaniasis. Pediatr Infect Dis J 22:434

    Google Scholar 

  55. Sundar S, Jha TK, Thakur CP et al (2002) Oral miltefosine for Indian visceral leishmaniasis. N Engl J Med 347:1739–1746

    Article  CAS  Google Scholar 

  56. Fichoux Y, Rousseau D, Ferrua B et al (1998) Short- and long-term efficacy of hexadecylphosphocholine against established Leishmania infantum infection in BALB/c mice. Antimicrob Agents Chemother 42:654–658

    Google Scholar 

  57. Sundar S, Jha TK, Thakur CP et al (2007) Injectable paromomycin for visceral leishmaniasis in India. N Engl J Med 356:2571–2581

    Article  CAS  Google Scholar 

  58. Sundar S, Chakravarty J (2008) Paromomycin in the treatment of leishmaniasis. Expert Opin Investig Drugs 17:787–794

    Article  CAS  Google Scholar 

  59. Maarouf M, de Kouchkovsky Y, Brown S et al (1997) In vivo interference of paromomycin with mitochondrial activity of Leishmania. Exp Cell Res 232:339–348

    Article  CAS  Google Scholar 

  60. Sundar S, Agrawal N, Arora R et al (2009) Short-course paromomycin treatment of visceral leishmaniasis in India: 14-day vs 21-day treatment. Clin Infect Dis 49:914–918

    Article  CAS  Google Scholar 

  61. Al-Abdely HM, Graybill JR, Loebenberg D et al (1999) Efficacy of the triazole SCH 56592 against Leishmania amazonensis and Leishmania donovani in experimental murine cutaneous and visceral leishmaniasis. Antimicrob Agents Chemother 43:2910–2914

    CAS  Google Scholar 

  62. Wasunna MK, Rashid JR, Mbui J et al (2005) A phase II dose-increasing study of sitamaquine for the treatment of visceral leishmaniasis in Kenya. Am J Trop Med Hyg 73:871–876

    CAS  Google Scholar 

  63. Savoia D, Allice T, Tovo PA (2005) Antileishmanial activity of HIV protease inhibitors. Int J Antimicrob Agents 26:92–94

    Article  CAS  Google Scholar 

  64. Fotie J, Bohle DS, Olivier M et al (2007) Trypanocidal and antileishmanial dihydrochelerythrine derivatives from Garcinia lucida. J Nat Prod 70:1650–1653

    Article  CAS  Google Scholar 

  65. Fournet A, Gantier JC, Gautheret A et al (1994) The activity of 2-substituted quinoline alkaloids in BALB/c mice infected with Leishmania donovani. J Antimicrob Chemother 33:537–544

    Article  CAS  Google Scholar 

  66. Lavaud C, Massiot G, Vasquez C et al (1995) 4-Quinolinone alkaloids from Dictyoloma peruviana. Phytochemistry 40:317–320

    Article  CAS  Google Scholar 

  67. Ferreira ME, Arias AR, Yaluff G et al (2010) Antileishmanial activity of furoquinolines and coumarins from Helietta apiculata. Phytomedicine 17:375–378

    Article  CAS  Google Scholar 

  68. Costa EV, Pinheiro MLB, Xavier CM et al (2006) A pyrimidine-β-carboline and other alkaloids from Annona foetida with antileishmanial activity. J Nat Prod 69:292–294

    Article  CAS  Google Scholar 

  69. Queiroz EF, Roblot F, Cave A et al (1996) Pessoine and spinosine, two catecholic berbines from Annona spinescens. J Nat Prod 59:438–440

    Article  CAS  Google Scholar 

  70. Correa JE, Rios CH, Castillo AR et al (2006) Minor alkaloids from Guatteria dumetorum with antileishmanial activity. Planta Med 72:270–272

    Article  CAS  Google Scholar 

  71. Waechter I, Hocquemiller CA, Bories R et al (1999) Antiprotozoal activity of aporphine alkaloids isolated from Unonopsis buchtienii (Annonaceae). Phytother Res 13:175–177

    Article  CAS  Google Scholar 

  72. daSilva DB, Tulli ECO, Militao GCG et al (2009) The antitumoral, trypanocidal and antileishmanial activities of extract and alkaloids isolated from Duguetia furfuracea. Phytomedicine 16:1059–1063

    Article  CAS  Google Scholar 

  73. Bringmann G, Hamm A, Gunther C et al (2000) Ancistroealaines A and B, two new bioactive naphthylisoquinolines, and related naphthoic acids from Ancistrocladus ealaensis. J Nat Prod 63:1465–1470

    Article  CAS  Google Scholar 

  74. Ponte-Sucre A, Faber JH, Gulder T et al (2007) Activities of naphthylisoquinoline alkaloids and synthetic analogs against Leishmania major. Antimicrob Agents Chemother 51:188–194

    Article  CAS  Google Scholar 

  75. Bringmann G, Dreyer M, Faber JH et al (2003) Ancistrotanzanine A, the first 5,3′-coupled naphthylisoquinoline alkaloid, and two further, 5,8′-linked related compounds from the newly described species Ancistrocladus tanzaniensis. J Nat Prod 66:1159–1165

    Article  CAS  Google Scholar 

  76. Bringmann G, Dreyer M, Faber JH (2004) Ancistrotanzanine C and related 5,1′- and 7,3′-coupled naphthylisoquinoline alkaloids from Ancistrocladus tanzaniensis. J Nat Prod 67:743–748

    Article  CAS  Google Scholar 

  77. Bringmann G, Messer K, Brun R et al (2002) Ancistrocongolines A-D, new naphthylisoquinoline alkaloids from Ancistrocladus congolensis. J Nat Prod 65:1096–1101

    Article  CAS  Google Scholar 

  78. Fournet A, Munoz V, Manjon AM et al (1988) Activite antiparasitaire dalcaloides bisbenzylisoquinoleiques. I: activite in vitro sur des promastigotes de trois souches de Leishmania. J Ethnopharmacol 24:327–335

    Article  CAS  Google Scholar 

  79. Munoz V, Morretti C, Sauvain M et al (1994) Isolation of bis-indole alkaloids with antileishmanial and antibacterial activities from Peschiera van heurkii (syn. Tabernaemontana van heurkii). Planta Med 60:455–459

    Article  CAS  Google Scholar 

  80. Tanaka JCA, Silva CC, Ferreira ICP et al (2007) Antileishmanial activity of indole alkaloids from Aspidosperma ramiflorum. Phytomedicine 14:377–380

    Article  CAS  Google Scholar 

  81. Kam T, Sim K, Koyano T et al (1998) Cytotoxic and leishmanicidal aminoglycosteroids and aminosteroids from Holarrhena curtisii. J Nat Prod 61:1332–1336

    Article  CAS  Google Scholar 

  82. Cazorla D, Yepez J, Anez N et al (2001) Antileishmania effect of intralesional procaine and dibucaine in hamsters. Invest Clin 42:5–21

    CAS  Google Scholar 

  83. Muhammad I, Dunbar DC, Khan SI et al (2003) Antiparasitic alkaloids from Psychotria klugii. J Nat Prod 66:962–967

    Article  CAS  Google Scholar 

  84. Gonzalez P, Marin C, Rodriguez-Gonzalez I et al (2005) In vitro activity of C20-diterpenoid alkaloid derivatives in promastigotes and intracellular amastigotes of Leishmania infantum. Int J Antimicrob Agents 25:136–141

    Article  CAS  Google Scholar 

  85. Salem MM, Werbovetz KA (2006) Review Natural products from plants as drug candidates and lead compounds against leishmaniasis and trypanosomiasis. Curr Med Chem 13:2571–2598

    Article  CAS  Google Scholar 

  86. Ahua KM, Ioset JR, Ransijn A et al (2004) Antileishmanial and antifungal acridone derivatives from the roots of Thamnosma rhodesica. Phytochemistry 65:963–968

    Article  CAS  Google Scholar 

  87. Jean-Robert I (2008) Natural products for neglected diseases: a review. Curr Org Chem 12:643–666

    Article  Google Scholar 

  88. Ferreira ME, Rojas AA, Torres OS et al (2002) Leishmanicidal activity of two canthin-6-one alkaloids, two major constituents of Zanthoxylum chiloperone var. angustifolium. J Ethnopharmacol 80:199–202

    Article  CAS  Google Scholar 

  89. Kerr RG, Kerr SS (1999) Marine natural products as therapeutic agents. Exp Opin Ther Paten 9:1207–1222

    Article  CAS  Google Scholar 

  90. Nakao Y, Shiroiwa T, Murayama S et al (2004) Identification of renieramycin A as an antileishmanial substance in a marine sponge Neopetrosia sp. Mar Drug 2:55–62

    Article  CAS  Google Scholar 

  91. Dube A, Singh N, Saxena A et al (2007) Antileishmanial potential of a marine sponge Haliclona exigua (Kirkpatrick) against experimental visceral leishmaniasis. Parasitol Res 101:317–324

    Article  Google Scholar 

  92. Sanchez LM, Lopez D, Vesely BA et al (2010) Almiramides A-C: discovery and development of a new class of leishmaniasis lead compounds. J Med Chem 53:4187–4197

    Article  CAS  Google Scholar 

  93. Balunas MJ, Linington RG, Tidgewell K et al (2010) Dragonamide E, a modified linear lipopeptide from Lyngbya majuscula with antileishmanial activity. J Nat Prod 73:60–66

    Article  CAS  Google Scholar 

  94. Simmons TL, Engene N, Urena LD et al (2008) Viridamides A and B, lipodepsipeptides with antiprotozoal activity from the marine cyanobacterium Oscillatoria nigro-Viridis. J Nat Prod 71:1544–1550

    Article  Google Scholar 

  95. Pimentel-Elardo SM, Kozytska S, Bugni TS et al (2010) Anti-parasitic compounds from Streptomyces sp. Strains isolated from Mediterranean sponges. Mar Drugs 8:373–380

    Article  CAS  Google Scholar 

  96. Rao KV, Kasanah N, Wahyuono S et al (2004) Three new manzamine alkaloids from a common indonesian sponge and their activity against infectious and tropical parasitic diseases. J Nat Prod 67:1314–1318

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Professor Vyasji Tripathi, Department of Chemistry, for his useful discussions during preparation of the manuscript. Financial assistance from CSIR, New Delhi, is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinod Kumar Tiwari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Mishra, B.B., Kishore, N., Singh, R.K., Tiwari, V.K. (2013). Scope of Alkaloids in Antileishmanial Drug Discovery and Development. In: Ramawat, K., Mérillon, JM. (eds) Natural Products. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22144-6_91

Download citation

Publish with us

Policies and ethics