Skip to main content

Fatigue Load Conditions

  • Reference work entry
Handbook of Adhesion Technology

Abstract

Fatigue involves the failure of materials under cyclic loading, where the maximum load can be significantly lower than that required to cause static failure. Polymeric adhesives, like most materials, are susceptible to fatigue failure, and, hence, fatigue should be accounted for when designing bonded structures subjected to cyclic loading. Adhesive joints have potentially good fatigue resistance compared with other joining methods; however, they are also susceptible to accelerated fatigue failure due to the actions of environmental ageing or viscoelastic creep. In this chapter, the effect of the environment and various fatigue loading parameters on the fatigue behavior of adhesively bonded joints is discussed before describing the main methods of characterizing and predicting fatigue. Traditionally, fatigue behavior has been characterized through the use of experimentally derived stress-life plots, and fracture mechanics–based progressive crack growth methods have also been widely discussed. In more recent years, damage mechanics–based progressive modelling methods have been proposed that have the advantage of predicting both initiation and crack progression phases of fatigue and have also been shown to be readily adapted to the prediction of variable amplitude fatigue and combined fatigue-environmental ageing. The chapter finishes with descriptions of two special cases of fatigue: creep-fatigue and impact fatigue, which have been shown to be extremely detrimental to the fatigue life of bonded joints under certain conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel Wahab MM, Ashcroft IA, Crocombe AD, Hughes DJ, Shaw SJ (2001a) Compos Part A 32:59

    Article  Google Scholar 

  • Abdel Wahab MM, Ashcroft IA, Crocombe AD, Hughes DJ, Shaw SJ (2001b) J Adhes Sci Technol 15:763

    Article  Google Scholar 

  • Abdel Wahab MM, Ashcroft IA, Crocombe AD, Smith PA (2004) Compos Part A 35:213

    Article  Google Scholar 

  • Abdel Wahab MM, Hilmy I, Ashcroft IA, Crocombe AD (2010a) J Adhes Sci Technol 24:305

    Article  Google Scholar 

  • Abdel Wahab MM, Hilmy I, Ashcroft IA, Crocombe AD (2010b) J Adhes Sci Technol 24:325

    Article  Google Scholar 

  • Al-Ghamdi AH, Ashcroft IA, Crocombe AD, Abdel Wahab MM (2003) J Adhes 79:1161

    Article  Google Scholar 

  • Al-Ghamdi AH, Ashcroft IA, Crocombe AD, Abdel-Wahab MM (2004) Proceedings of the 7th international conference on structural adhesives in engineering. IOM Communications, London, pp 22–25

    Google Scholar 

  • Ashcroft IA (2004) J Strain Anal 39:707

    Article  Google Scholar 

  • Ashcroft IA, Shaw SJ (2002) Int J Adhes Adhes 22:151

    Article  Google Scholar 

  • Ashcroft IA, Abdel Wahab MM, Crocombe AD, Hughes DJ, Shaw SJ (2001a) Compos Part A 32:45

    Article  Google Scholar 

  • Ashcroft IA, Abdel-Wahab MM, Crocombe AD, Hughes DJ, Shaw SJ (2001b) J Adhes 75:61

    Article  Google Scholar 

  • Ashcroft IA, Abdel-Wahab MM, Crocombe AD (2003) Mech Adv Mater Struct 10:227

    Article  Google Scholar 

  • Ashcroft IA, Casas-Rodriguez JP, Silberschmidt VV (2010) J Adhes 86:522

    Article  Google Scholar 

  • Casas-Rodriguez JP, Ashcroft IA, Silberschmidt VV (2007) J Sound Vib 308:467

    Article  Google Scholar 

  • Casas-Rodriguez JP, Ashcroft IA, Silberschmidt VV (2008) Comp Sci Technol 68:2663

    Article  Google Scholar 

  • Coffin LF (1954) Trans Am Soc Mech Eng 76:931

    Google Scholar 

  • Crocombe AD, Richardson G (1999) Int J Adhes Adhes 19:19

    Article  Google Scholar 

  • Dowling NE (1999) Mechanical behaviour of materials. Prentice Hall, New Jersey, pp 390–392

    Google Scholar 

  • Erpolat S, Ashcroft IA, Crocombe AD, Abdel Wahab MM (2004a) Int J Fatigue 26:1189

    Article  Google Scholar 

  • Erpolat S, Ashcroft IA, Crocombe AD, Abdel Wahab MM (2004b) Comp A 35:1175

    Article  Google Scholar 

  • Farrow IR (1989) Damage accumulation and degradation of composite laminates under aircraft service loading: Assessment and prediction, Volumes I & Volumes II. PhD thesis, Cranfield Institute of Technology

    Google Scholar 

  • Gomatam R, Sancaktar E (2006) J Adhes Sci Technol 20:69

    Article  Google Scholar 

  • Griffith AA (1921) Phil Trans R Soc A221:163

    Google Scholar 

  • Irwin GR (1958) Fracture. In: Flugge S (ed) Handbuch der physic VI. Springer, Berlin, pp 551–590

    Google Scholar 

  • Khoramishad H, Crocombe AD, Katnam K, Ashcroft IA (2010a) Int J Fatigue 32:1146

    Article  Google Scholar 

  • Khoramishad H, Crocombe AD, Katnam K, Ashcroft IA (2010b) Int J Adhes Adhes 32:1278

    Google Scholar 

  • Landes JD, Begley JA (1976) Mechanics of crack growth, ASTM STP 590. American Society for Testing and Materials, Philadelphia, pp 128–148

    Book  Google Scholar 

  • Levebvre DR, Dillard DA (1999) J Adhes 70:119

    Article  Google Scholar 

  • Little MSG (1999) Durability of structural adhesive joints. Ph.D. thesis, London, Imperial College of Science, Technology and Medicine

    Google Scholar 

  • Manson SS (1954) Behaviour of materials under conditions of thermal stress. In: National Advisory Commission on Aeronautics. Report 1170, Lewis Flight Propulsion Laboratory, Cleveland, pp 317–350

    Google Scholar 

  • Miner MA (1945) J Appl Mech 12:64

    Google Scholar 

  • Nisitani H, Nakamura K (1982) Trans Jpn Soc Mech Eng 48:990

    Article  Google Scholar 

  • Palmgren A (1924) Z Ver Dtsch Ing 68:339

    Google Scholar 

  • Paris PC, Gomez MP, Anderson WE (1961) Trend Eng 13:9

    Google Scholar 

  • Pirondi A, Moroni F (2010) J Adhes 86:501

    Article  Google Scholar 

  • Quaresimin M, Ricotta M (2006) Comp Sci Technol 66:647

    Article  Google Scholar 

  • Rice JR (1968) J Appl Mech 35:379

    Article  Google Scholar 

  • Saxena A (1986) In: Underwood JH et al (eds) Fracture mechanics: seventeenth volume, ASTM STP 905. American Society for Testing and Materials, Philadelphia, pp 185–201

    Chapter  Google Scholar 

  • Schaff JR, Davidson BD (1997a) J Comp Mater 31:128

    Article  Google Scholar 

  • Schaff JR, Davidson BD (1997b) J Comp Mater 31:158

    Article  Google Scholar 

  • Shenoy V, Ashcroft IA, Critchlow GW, Crocombe AD, Abdel Wahab MM (2009a) Int J Adhes Adhes 29:361

    Article  Google Scholar 

  • Shenoy V, Ashcroft IA, Critchlow GW, Crocombe AD, Abdel Wahab MM (2009b) Int J Fatigue 31:820

    Article  Google Scholar 

  • Shenoy V, Ashcroft IA, Critchlow GW, Crocombe AD, Abdel Wahab MM (2009c) Int J Adhes Adhes 29:639

    Article  Google Scholar 

  • Shenoy V, Ashcroft IA, Critchlow GW, Crocombe AD (2010a) Int J Fatigue 32:1278

    Article  Google Scholar 

  • Shenoy V, Ashcroft IA, Critchlow GW, Crocombe AD (2010b) Eng Fract Mech 77:1073

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian A. Ashcroft .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Ashcroft, I.A. (2011). Fatigue Load Conditions. In: da Silva, L.F.M., Ă–chsner, A., Adams, R.D. (eds) Handbook of Adhesion Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01169-6_33

Download citation

Publish with us

Policies and ethics