Skip to main content

Measuring Cell Motility Using Quantum Dot Probes

  • Protocol
Quantum Dots

Abstract

The ability of cancer cells to migrate and metastasize is known to be directly related to tumor cell motility. Therefore, assaying the level of tumor cell motility is an excellent indicator of metastatic potential. We have developed an efficient and sensitive two-dimensional cell motility assay to image the phagokinetic uptake of colloidal CdSe/ZnS semiconductor nanocrystals (quantum dots [QDs]).

As cells move across a thin, homogeneous layer of QDs, they engulf and uptake the nanocrystals and leave behind a fluorescent-free trail. By measuring the ratio of trail area to cell area we have discovered that it is possible to distinguish between noninvasive and invasive cancer cells lines. This technique has, therefore, the potential to be used as a rapid, robust, and quantitative in vitro measure of metastatic potential. Because the technique only relies on fluorescence detection, requires no significant data processing, and is used with live cells, it is both rapid and straightforward.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Partin, A. W., Schoeniger, J. S., Mohler, J. L., and Coffey, D. S. (1989) Fourier analysis of cell motility correlation of motility with metastatic potential. Proc. Natl. Acad. Sci. USA 86, 1254–1258.

    Article  CAS  PubMed  Google Scholar 

  2. Albini, A., Iwamoto, Y., Kleinman, H. K., et al. (1987) A rapid in vitro assay for quantitating the invasive potential of tumor cells. Cancer Res. 47, 3239–3245.

    CAS  PubMed  Google Scholar 

  3. Kramer, R. H., Bensch, K. G., and Wong, J. (1986) Invasion of reconstituted basement membrane by metastatic human tumor cells. Cancer Res. 46, 1980–1989.

    CAS  PubMed  Google Scholar 

  4. Terranova, V. P., Hujanen, E. S., and Martin, G. R. (1986) Basement membrane and the invasive activity of metastatic tumor cells. J. Nat. Cancer Inst. 77, 311–316.

    CAS  PubMed  Google Scholar 

  5. Rajah, T. T., Abidi, S. M. A., Rambo, D. J., Dmytryk, J. J., and Pento, J. T. (1998) The motile behavior of human breast cancer cells characterized by time-lapse videomicroscopy. In Vitro Cell. Dev. Biol. Anim. 34, 626–628.

    Article  CAS  PubMed  Google Scholar 

  6. Albrecht-Buehler, G. (1977) The phagokinetic tracks of 3T3 cells. Cell 11, 395–404.

    Article  CAS  PubMed  Google Scholar 

  7. Albrecht-Buehler, G. (1977) The phagokinetic tracks of 3T3 cells: parallels between the orientation of track segments and of cellular structures which contain actin or tubulin. Cell 12, 333–339.

    Article  CAS  PubMed  Google Scholar 

  8. Parak, W. J., Boudreau, R., Le Gros, M., et al. (2002) Cell motility and metastatic potential studies based on quantum dot imaging of phagokinetic tracks. Adv. Mat. 14, 882–885.

    Article  CAS  Google Scholar 

  9. Pellegrino, T., Parak, W. J., Boudreau, R., et al. (2003) Quantum dot-based cell motility assay. Differentiation 71, 542–548.

    Article  PubMed  Google Scholar 

  10. Murray, C. B., Norris, D. J., and Bawendi, M. G. (1993) Synthesis and characterization of nearly monodisperse CdE(E=S, Se, Te) semiconductor nanocrystallites. J. Amer. Chem. Soc. 115, 8706–8715.

    Article  CAS  Google Scholar 

  11. Hines, M. A. and Cuyostsionnest, P. (1996) Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat. Biotechnol. 21, 47–51.

    Google Scholar 

  12. Dabbousi, B. O., Rodriguez-Viejo, J., Mikulec, F. V., et al. (1997) (CdSe)ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. J. Phys. Chem. B 101, 9463–9475.

    Article  CAS  Google Scholar 

  13. Alivisatos, A. P. (1996) Semiconductor clusters, nanocrystals and quantum dots. Science 271, 933–937.

    Article  CAS  Google Scholar 

  14. Gerion, D., Pinaud, F., Williams, S. C., et al. (2001) Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots. J. Phys. Chem. B 105, 8861–8871.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Gu, W. et al. (2007). Measuring Cell Motility Using Quantum Dot Probes. In: Bruchez, M.P., Hotz, C.Z. (eds) Quantum Dots. Methods in Molecular Biology, vol 374. Humana Press. https://doi.org/10.1385/1-59745-369-2:125

Download citation

  • DOI: https://doi.org/10.1385/1-59745-369-2:125

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-562-0

  • Online ISBN: 978-1-59745-369-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics