Skip to main content

A Continuous Assay for DNA Cleavage Using Molecular Break Lights

  • Protocol
Fluorescent Energy Transfer Nucleic Acid Probes

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 335))

  • 2203 Accesses

Abstract

Exploring the properties of molecules that cleave DNA (i.e., enzymatic nucleases, chemical footprinting agents, and naturally occurring DNA cleaving antibiotics) has been an ongoing process with benefits extending toward both laboratory and clinical applications. Despite the progress that has been made toward understanding the mechanics of DNA cleavage, a simple and continuous assay for detecting DNA cleavage has been lacking. Herein, we describe the molecular break light assay, wherein a single oligonucleotide modified by a 5′-fluorophore-3′-quencher pair adopting a stem-loop structure with an appropriate DNA recognition site, provides for the rapid assaying of DNA cleavage with high sensitivity. Furthermore, the described methodology is highly convenient in that it is readily adaptable to common laboratory fluorometers and multi-well plate/ array systems, which may provide the basis for high-throughput screening of novel DNA cleaving agents. This assay may also be further extended to natural or “unnatural” transcription factor protection assay systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Klostermeier, D. and Millar, D. P. (2002) Time-resolved fluorescence resonance energy transfer: a versatile tool for the analysis of nucleic acids. Biopolymers 61, 159–179.

    Article  CAS  Google Scholar 

  2. Brodie, S., Giron, J., and Latt, S. A. (1975) Estimation of accessibility of DNA in chromatin from fluorescence measurements of electronic excitation energy transfer. Nature 253, 470–471.

    Article  PubMed  CAS  Google Scholar 

  3. Yarbrough, L. R., Schlageck, J. G., and Baughman, M. (1979) Synthesis and properties of fluorescent nucleotide substrates for DNA-dependant RNA polymerases. J. Biol. Chem. 254, 12,069–12,073.

    PubMed  CAS  Google Scholar 

  4. Wu, F. Y-H. and Tyagi, S. C. (1987) Fluorescence resonance energy transfer studies on the proximity relationship between the intrinsic metal ion and substrate binding sites of Escherichia coli RNA polymerase. J. Biol. Chem. 262, 13,147–13,154.

    PubMed  CAS  Google Scholar 

  5. Murchie, A. I. H., Clegg, R. M., von Kitzing, E., Duckett, D. R., Diekmann, S., and Lilley, D. M. J. (1989) Fluorescence energy transfer shows that the four-way DNA junction is a right-handed cross of antiparallel molecules. Nature 341, 763–766.

    Article  PubMed  CAS  Google Scholar 

  6. Tyagi, S. and Kramer, F. R. (1996) Molecular beacons: probes that fluoresce upon hybridization. Nat. Biotechnol. 14, 303–308.

    Article  PubMed  CAS  Google Scholar 

  7. Biggins, J. B., Prudent, J. R., Marshall, D. J., Ruppen, M., and Thorson, J. S. (2000) A continuous assay for DNA cleavage: the application of &“break lights&” to enediynes, iron-dependent agents, and nucleases. Proc. Nat. Acad. Sci. USA 97, 13,537–13,542.

    Article  PubMed  CAS  Google Scholar 

  8. Myers, A. G., Cohen, S. B., and Kwon, B.M. (1994) A study of the reaction of calicheamicin γ1 with glutathione in the presence of double-stranded DNA. J. Am. Chem. Soc. 116, 1255–1271.

    Article  CAS  Google Scholar 

  9. Burger, R. M., Horwitz, S. B., and Peisach, J. (1985) Stimulation of iron(II) bleomycin activity by phosphate-containing compounds. Biochemistry 24, 3623–3629.

    Article  PubMed  CAS  Google Scholar 

  10. Burger, R. M., Projan, S. J., Horwitz, S. B., and Peisach, J. (1985) The DNA cleavage mechanism of iron-bleomycin. Kinetic resolution of strand scission from base propenal release. J. Biol. Chem. 261, 15,955–15,959.

    Google Scholar 

  11. Roy, K. B., Vrushank, D., and Jayaram, B. (1994) Use of isotope-dilution phenomenon to advantage in the determination of kinetic constants KM and k cat for BamHI restriction endonuclease: an empirical and iterative approach. Anal. Biochem. 220, 160–164.

    Article  PubMed  CAS  Google Scholar 

  12. Hashimoto, S., Wang, B., and Hecht, S. M. (2001) Kinetics of DNA cleavage by Fe(II)-bleomycins. J. Am. Chem. Soc. 123, 7437–7438.

    Article  PubMed  CAS  Google Scholar 

  13. Jacobsen, E. N. and Finney, N. S. (1994) Synthetic and biological catalysts in chemical synthesis: how to assess practical utility. Chem. Biol. 1, 85–90.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Biggins, J.B., Prudent, J.R., Marshall, D.J., Thorson, J.S. (2006). A Continuous Assay for DNA Cleavage Using Molecular Break Lights. In: Didenko, V.V. (eds) Fluorescent Energy Transfer Nucleic Acid Probes. Methods in Molecular Biology™, vol 335. Humana Press. https://doi.org/10.1385/1-59745-069-3:83

Download citation

  • DOI: https://doi.org/10.1385/1-59745-069-3:83

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-380-0

  • Online ISBN: 978-1-59745-069-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics