Skip to main content

Distance Determination in Protein-DNA Complexes Using Fluorescence Resonance Energy Transfer

  • Protocol
Fluorescent Energy Transfer Nucleic Acid Probes

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 335))

Abstract

Fluorescence resonance energy transfer (FRET) provides distance information between a donor and an acceptor dye in the range of 10-100 Å. Knowledge of the exact positions of some dyes (e.g., fluorescein, rhodamine, or Cy3) with respect to nucleic acids and DNA design enables us to translate these data into precise structural information using molecular modeling. Here we describe this in vitro approach from the design and synthesis of the DNA FRET samples to the fluorescence spectroscopy methods and analysis. Advances in the preparation of dye-labeled nucleic acid molecules and modern techniques like the measurement of FRET in vivo lead to an increased importance of FRET studies in structural and molecular biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fürster, T. (1946) Energiewandlung und Fluoreszenz. Naturwissenschaften 6, 166–175.

    Article  Google Scholar 

  2. van der Meer, B. W. (2002) Kappa-squared: from nuisance to new sense. J. Biotechnol. 82, 181–196.

    Google Scholar 

  3. Stryer, L. and Haugland, R. P. (1967) Energy transfer: a spectroscopic ruler. Proc. Natl. Acad. Sci. USA 58, 719–726.

    Article  PubMed  CAS  Google Scholar 

  4. Silhan, J., Obsilova, V., Vecer, J., et al. (2004) 14-3-3 protein C-terminal stretch occupies ligand binding groove and is displaced by phosphopeptide binding. J. Biol. Chem. 279, 49,113–49,119.

    Article  PubMed  CAS  Google Scholar 

  5. Jares-Erijman, E. A. and Jovin, T. (2003) FRET imaging. Nat. Biotechnol. 21, 1387–1395.

    Article  PubMed  CAS  Google Scholar 

  6. Clegg, R. M. (1992) Fluorescence resonance energy transfer and nucleic acids. Methods Enzymol. 211, 353–388.

    Article  PubMed  CAS  Google Scholar 

  7. Hillisch, A., Lorenz, M., and Diekmann, S. (2001) Recent advances in FRET: distance determination in protein-DNA complexes. Curr. Opin. Struct. Biol. 11, 201–207.

    Article  PubMed  CAS  Google Scholar 

  8. Norman, D. G., Grainger, R. J., Uhrin, D., and Lilley, D. M. (2000) Location of cyanine-3 on double-stranded DNA: importance for fluorescence resonance energy transfer studies. Biochemistry 39, 6317–6324.

    Article  PubMed  CAS  Google Scholar 

  9. Hillisch, A. (1998) Computer aided design and structure verification of single-and multiple-bulge DNA molecules. PhD thesis, Vienna, University Vienna.

    Google Scholar 

  10. Lorenz, M., Hillisch, A., Goodman, S. D., and Diekmann, S. (1999) Global structure similarities of intact and nicked DNA complexed with IHF measured in solution by fluorescence resonance energy transfer. Nucleic Acids Res. 27, 4619–4625.

    Article  PubMed  CAS  Google Scholar 

  11. Lorenz, M., Hillisch, A., Payet, D., Buttinelli, M., Travers, A. A., and Diekmann, S. (1999) DNA bending induced by high mobility group proteins studied by fluorescence resonance energy transfer. Biochemistry 38, 12,150–12,158.

    Article  PubMed  CAS  Google Scholar 

  12. Rice, P. A., Yang, S., Mizuuchi, K., and Nash, H. A. (1996) Crystal structure of an IHF-DNA complex: a protein-induced DNA U-turn. Cell 87, 1295–1306.

    Article  PubMed  CAS  Google Scholar 

  13. Payet, D., Hillisch, A., Lowe, N., Diekmann, S., and Travers, A. A. (1999) The recognition of distorted DNA structures by HMG-D: a footprinting and molecular modelling study, J. Mol. Biol. 294, 79–91.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Lorenz, M., Diekmann, S. (2006). Distance Determination in Protein-DNA Complexes Using Fluorescence Resonance Energy Transfer. In: Didenko, V.V. (eds) Fluorescent Energy Transfer Nucleic Acid Probes. Methods in Molecular Biology™, vol 335. Humana Press. https://doi.org/10.1385/1-59745-069-3:243

Download citation

  • DOI: https://doi.org/10.1385/1-59745-069-3:243

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-380-0

  • Online ISBN: 978-1-59745-069-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics