Skip to main content

Generation of HPV Pseudovirions Using Transfection and Their Use in Neutralization Assays

  • Protocol
Human Papillomaviruses

Part of the book series: Methods in Molecular Medicine ((MIMM,volume 119))

Summary

It has recently become possible to generate high-titer papillomavirus-based gene-transfer vectors. The vectors, also known as papillomavirus pseudoviruses (PsV), have been useful for studying papillomavirus assembly, entry, and neutralization, and may have future utility as laboratory gene-transfer tools or vaccine vehicles. This chapter outlines a simple method for production of PsV and their use in a high-throughput papillomavirus neutralization assay. The production method is based on transfection of a 293 cell line, 293TT, engineered to express high levels of SV40 large T antigen. The cells are co-transfected with codon-modified papillomavirus capsid genes, L1 and L2, together with a pseudogenome plasmid containing the SV40 origin of replication. Pseudogenome encapsidation within L1/L2 capsids is largely sequence independent, and plasmids entirely lacking PV sequences can be packaged efficiently, provided they are less than 8 kilobases in size. Non-infectious virus-like particles (VLPs) can also be produced after transfection of 293TT cells with L1 alone. Efficient purification of the PsV or VLPs is achieved by Optiprep (iodixanol) density gradient ultracentrifugation. Using these methods, it is possible to produce highly purified PsV with yields of at least 109 transducing units from a single 75-cm2 flask of cells. PsV encapsidating a secreted alkaline phosphatase (SEAP) reporter plasmid were used to develop a high-throughput in vitro neutralization assay in a 96-well plate format. Infection of 293TT cells is monitored by SEAP activity in the culture supernatant, using a highly sensitive chemiluminescent reporter system. Antibody-mediated PsV neutralization is detected by a reduction in SEAP activity. The neutralization assay has similar analytic sensitivity to, and higher specificity than, a standard VLP-based enzyme-linked immunosorbent assay (ELISA).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Meyers, C. and Laimins, L. A. (1994) In vitro systems for the study and propagation of human papillomaviruses. Curr. Top. Microbiol. Immunol. 186, 199–215.

    PubMed  CAS  Google Scholar 

  2. Roden, R. B., Greenstone, H. L., Kirnbauer, R., et al. (1996) In vitro generation and type-specific neutralization of a human papillomavirus type 16 virion pseudotype. J. Virol. 70, 5875-5883.

    Google Scholar 

  3. Unckell, F., Streeck, R. E., and Sapp, M. (1997) Generation and neutralization of pseudovirions of human papillomavirus type 33. J. Virol. 71, 2934–2939.

    PubMed  CAS  Google Scholar 

  4. Touze, A. and Coursaget, P. (1998) In vitro gene transfer using human papillomavirus-like particles. Nucleic Acids Res. 26, 1317–1323.

    Article  PubMed  CAS  Google Scholar 

  5. Schwartz, S. (2000) Regulation of human papillomavirus late gene expression. Ups J Med Sci 105, 171–192.

    PubMed  CAS  Google Scholar 

  6. Fu, X. Y. and Manley, J. L. (1987) Factors influencing alternative splice site utilization in vivo. Mol. Cell Biol. 7, 738–748.

    PubMed  CAS  Google Scholar 

  7. Andersen, K. J., Vik, H., Eikesdal, H. P., and Christensen, E. I. (1995) Effects of contrast media on renal epithelial cells in culture. Acta Radiol. Suppl. 399, 213–218.

    PubMed  CAS  Google Scholar 

  8. Buck, C. B., Pastrana, D. V., Lowy, D. R., and Schiller, J. T. (2004) Efficient intracellular assembly of papillomaviral vectors. J. Virol. 78, 751–757.

    Article  PubMed  CAS  Google Scholar 

  9. Leder, C., Kleinschmidt, J. A., Wiethe, C., and Muller, M. (2001) Enhancement of capsid gene expression: preparing the human papillomavirus type 16 major structural gene L1 for DNA vaccination purposes. J. Virol. 75, 9201–9209.

    Article  PubMed  CAS  Google Scholar 

  10. Pastrana, D. V., Buck, C. B., Pang, Y. Y., et al. (2004) Reactivity of human sera in a sensitive, high-throughput pseudovirus-based papillomavirus neutralization assay for HPV16 and HPV18. Virology 321, 205–216.

    Article  PubMed  CAS  Google Scholar 

  11. Buck, C. B., Thompson, C. D., Pang, Y.-Y. S., Lowy, D. R., and Schiller, J. T. (2005) Maturation of papillomavirus capsids. J. Virol. 79, 2839–2846.

    Article  PubMed  CAS  Google Scholar 

  12. Selinka, H. C., Giroglou, T., Nowak, T., Christensen, N. D., and Sapp, M. (2003) Further evidence that papillomavirus capsids exist in two distinct conformations. J. Virol. 77, 12,961–12,967.

    Article  PubMed  CAS  Google Scholar 

  13. Roden, R. B., Lowy, D. R., and Schiller, J. T. (1997) Papillomavirus is resistant to desiccation. J. Infect. Dis. 176, 1076–1079.

    Article  PubMed  CAS  Google Scholar 

  14. Volkin, D. B., Shi, L., and Sanyal, G. (2002) Stabilized human papillomavirus formulations. U.S. patent 6,358,744 B1.

    Google Scholar 

  15. Joyce, J. G., Tung, J. S., Przysiecki, C. T., et al. (1999) The L1 major capsid protein of human papillomavirus type 11 recombinant virus-like particles interacts with heparin and cell-surface glycosaminoglycans on human keratinocytes. J. Biol. Chem. 274, 5810–5822.

    Article  PubMed  CAS  Google Scholar 

  16. Klasse, P. J. and Sattentau, Q. J. (2002) Occupancy and mechanism in antibody-mediated neutralization of animal viruses. J. Gen. Virol. 83, 2091–2108.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc.

About this protocol

Cite this protocol

Buck, C.B., Pastrana, D.V., Lowy, D.R., Schiller, J.T. (2005). Generation of HPV Pseudovirions Using Transfection and Their Use in Neutralization Assays. In: Davy, C., Doorbar, J. (eds) Human Papillomaviruses. Methods in Molecular Medicine, vol 119. Humana Press. https://doi.org/10.1385/1-59259-982-6:445

Download citation

  • DOI: https://doi.org/10.1385/1-59259-982-6:445

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-373-2

  • Online ISBN: 978-1-59259-982-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics