Skip to main content

Animal Models of Cardiac Fibrosis

  • Protocol
Fibrosis Research

Part of the book series: Methods in Molecular Medicine ((MIMM,volume 117))

Abstract

A collagen network, composed largely of type I and III fibrillar collagens, is found in the heart’s interstitial space. This network has multiple functions, including the preservation of tissue architecture and chamber geometry. Given its tensile strength, type I collagen is a major determinant of tissue stiffness. Its disproportionate accumulation, expressed in morphological terms as tissue fibrosis, increases myocardial passive and active stiffness and contributes to ventricular diastolic and systolic dysfunction. Various animal models of cardiac fibrosis have been used to study its functional consequences and to elucidate factors regulating the cellular and molecular biology of fibrogenesis. Herein, we present our experience and findings with several models of cardiac fibrosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Laurent, G. J. (1987) Dynamic state of collagen: pathways of collagen degradation in vivo and their possible role in regulation of collagen mass. Am. J. Physiol. 252, C1–C9.

    PubMed  CAS  Google Scholar 

  2. Docherty, A. J. and Murphy, G. (1990) The tissue metalloproteinase family and the inhibitor TIMP: a study using cDNAs and recombinant proteins. Ann. Rheum. Dis. 49, 469–479.

    PubMed  Google Scholar 

  3. Tyagi, S. C., Ratajska, A. and Weber, K. T. (1993) Myocardial matrix metalloproteinase(s): localization and activation. Mol. Cell. Biochem. 126, 49–59.

    Article  PubMed  CAS  Google Scholar 

  4. Weber, K. T., Sun, Y. and Katwa, L. C. (1997) Myofibroblasts and local angiotensin II in rat cardiac tissue repair. Int. J. Biochem. Cell Biol. 29, 31–42.

    Article  PubMed  CAS  Google Scholar 

  5. Jugdutt, B. I. and Amy, R. W. M. (1986) Healing after myocardial infarction in the dog: changes in infarct hydroxyproline and topography. J. Am. Coll. Cardiol. 7, 91–102.

    Article  PubMed  CAS  Google Scholar 

  6. Brilla, C. G., Matsubara, L. S., and Weber, K. T. (1993) Anti-aldosterone treatment and the prevention of myocardial fibrosis in primary and secondary hyperaldosteronism. J. Mol. Cell. Cardiol. 25, 563–575.

    Article  PubMed  CAS  Google Scholar 

  7. Medugorac, I. (1980) Collagen content in different areas of normal and hypertrophied rat myocardium. Cardiovasc. Res. 14, 551–554.

    Article  PubMed  CAS  Google Scholar 

  8. Weber, K. T., Pick, R., Janicki, J. S., Gadodia, G., and Lakier, J. B. (1988) Inadequate collagen tethers in dilated cardiopathy. Am. Heart J. 116, 1641–1646.

    Article  PubMed  CAS  Google Scholar 

  9. Bishop, J., Greenbaum, J., Gibson, D., Yacoub, M., and Laurent, G. J. (1990) Enhanced deposition of predominantly type I collagen in myocardial disease. J. Mol. Cell. Cardiol. 22, 1157–1165.

    Article  PubMed  CAS  Google Scholar 

  10. Chapman, D., Weber, K. T., and Eghbali, M. (1990) Regulation of fibrillar collagen types I and III and basement membrane type IV collagen gene expression in pressure overloaded rat myocardium. Circ. Res. 67, 787–794.

    PubMed  CAS  Google Scholar 

  11. Mukherjee, D. and Sen, S. (1990) Collagen phenotypes during development and regression of myocardial hypertrophy in spontaneously hypertensive rats. Circ. Res. 67, 1474–1480.

    PubMed  CAS  Google Scholar 

  12. Pfeffer, M. A., Pfeffer, J. M., Fishbein, M. C., Fletcher, P. J., Spadaro, J., Kloner, R. A., and Braunwald, E. (1979) Myocardial infarct size and ventricular function in rats. Circ. Res. 44, 503–512.

    PubMed  CAS  Google Scholar 

  13. Sun, Y. and Weber, K. T. (1994) Angiotensin II receptor binding following myocardial infarction in the rat. Cardiovasc. Res. 28, 1623–1628.

    Article  PubMed  CAS  Google Scholar 

  14. Sun, Y., Zhang, J. Q., Zhang, J., and Lamparter, S. (2000) Cardiac remodeling by fibrous tissue after infarction in rats. J. Lab. Clin. Med. 135, 316–323.

    Article  PubMed  CAS  Google Scholar 

  15. Sun, Y., Cleutjens, J. P. M., Diaz-Arias, A. A., and Weber, K. T. (1994) Cardiac angiotensin converting enzyme and myocardial fibrosis in the rat. Cardiovasc. Rets. 28, 1423–1432.

    Article  CAS  Google Scholar 

  16. Cleutjens, J. P. M., Kandala, J. C., Guarda, E., Guntaka, R. V., and Weber, K. T. (1995) Regulation of collagen degradation in the rat myocardium after infarction. J. Mol. Cell. Cardiol. 27, 1281–1292.

    Article  PubMed  CAS  Google Scholar 

  17. Peterson, J. T., Li, H., Dillon, L., and Bryant, J. W. (2000) Evolution of matrix metalloprotease and tissue inhibitor expression during heart failure progression in the infarcted rat. Cardiovasc. Res. 46, 307–315.

    Article  PubMed  CAS  Google Scholar 

  18. Cleutjens, J. P. M., Verluyten, M. J. A., Smits, J. F. M., and Daemen, M. J. A. P. (1995) Collagen remodeling after myocardial infarction in the rat heart. Am. J. Pathol. 147, 325–338.

    PubMed  CAS  Google Scholar 

  19. Sun, Y., Zhang, J. Q., Zhang, J., and Ramires, F. J. A. (1998) Angiotensin II, transforming growth factor-β1 and repair in the infarcted heart. J. Mol. Cell. Cardiol. 30, 1559–1569.

    Article  PubMed  CAS  Google Scholar 

  20. Wei, S., Chow, L. T., Shum, I. O., Qin, L., and Sanderson, J. E. (1999) Left and right ventricular collagen type I/III ratios and remodeling post-myocardial infarction. J. Cardiac Failure 5, 117–126.

    Article  CAS  Google Scholar 

  21. Gideon, P. A., Warrington, K. J., Lu, L., Sun, Y., and Weber, K. T. (2003) Autoimmune lymphocyte response at sites remote to myocardial infarction [abstract]. Circulation 108, IV–69.

    Google Scholar 

  22. Sun, Y. and Weber, K. T. (1996) Angiotensin converting enzyme and myofibroblasts during tissue repair in the rat heart. J. Mol. Cell. Cardiol. 28, 851–858.

    Article  PubMed  CAS  Google Scholar 

  23. Blankesteijn, W. M., Essers-Janssen, Y. P. G., Verluyten, M. J. A., Daemen, M. J. A. P., and Smits, J. F. M. (1997) A homologue of Drosophila tissue polarity gene frizzled is expressed in migrating myofibroblasts in the infarcted rat heart. Nat. Med. 3, 541–544.

    Article  PubMed  CAS  Google Scholar 

  24. Peterson, D. J., Ju, H., Hao, J., Panagia, M., Chapman, D. C., and Dixon, I. M. (1999) Expression of Gi-2α and Gsα in myofibroblasts localized to the infarct scar in heart failure due to myocardial infarction. Cardiovasc. Res. 41, 575–585.

    Article  PubMed  CAS  Google Scholar 

  25. Gabbiani, G., Hirschel, B. J., Ryan, G. B., Statkov, P. R., and Majno, G. (1972) Granulation tissue as a contractile organ. A study of structure and function. J. Exp. Med. 135, 719–734.

    Article  PubMed  CAS  Google Scholar 

  26. Yokozeki, M., Moriyama, K., Shimokawa, H., and Kuroda, T. (1997) Transforming growth factor-β1 modulates myofibroblastic phenotype of rat palatal fibroblasts in vitro. Exp. Cell Res. 231, 328–336.

    Article  PubMed  CAS  Google Scholar 

  27. Khouw, I. M., van Wachem, P. B., Plantinga, J. A., Vujaskovic, Z., Wissink, M. J., de Leij, L. F., and van Luyn, M. J. (1999) TGF-β and βFGF affect the differentiation of proliferating porcine fibroblasts into myofibroblasts in vitro. Biomaterials 20, 1815–1822.

    Article  PubMed  CAS  Google Scholar 

  28. Evans, R. A., Tian, Y. C., Steadman, R., and Phillips, A. O. (2003) TGF-β1-mediated fibroblast-myofibroblast terminal differentiation-the role of Smad proteins. Exp. Cell Res. 282, 90–100.

    Article  PubMed  CAS  Google Scholar 

  29. Willems, I. E. M. G., Havenith, M. G., De Mey, J. G. R., and Daemen, M. J. A. P. (1994) The α-smooth muscle actin-positive cells in healing human myocardial scars. Am. J. Pathol. 145, 868–875.

    PubMed  CAS  Google Scholar 

  30. Sun, Y., Zhang, J., Zhang, J. Q., and Ramires, F. J. A. (2000) Local angiotensin II and transforming growth factor-β1 in renal fibrosis of rats. Hypertension 35, 1078–1084.

    PubMed  CAS  Google Scholar 

  31. Ou, R., Sun, Y., Ganjam, V. K., and Weber, K. T. (1996) In situ production of angiotensin II by fibrosed rat pericardium. J. Mol. Cell. Cardiol. 28, 1319–1327.

    Article  PubMed  CAS  Google Scholar 

  32. Yamagishi, H., Kim, S., Nishikimi, T., Takeuchi, K., and Takeda, T. (1993) Contribution of cardiac renin-angiotensin system to ventricular remodelling in myocardial-infarcted rats. J. Mol. Cell. Cardiol. 25, 1369–1380.

    Article  PubMed  CAS  Google Scholar 

  33. Jugdutt, B. I., Humen, D. P., Khan, M. I., and Schwarz-Michorowski, B. L. (1992) Effect of left ventricular unloading with captopril on remodeling and function during healing of anterior transmural myocardial infarction in the dog. Can. J. Cardiol. 8, 151–163.

    PubMed  CAS  Google Scholar 

  34. Jugdutt, B. I., Khan, M. I., Jugdutt, S. J., and Blinston, G. E. (1995) Effect of enalapril on ventricular remodeling and function during healing after anterior myocardial infarction in the dog. Circulation 91, 802–812.

    PubMed  CAS  Google Scholar 

  35. Michel, J.-B., Lattion, A.-L., Salzmann, J.-L., Cerol, M. L., Philippe, M., Camilleri, J.-P., and Corvol, P. (1988) Hormonal and cardiac effects of converting enzyme inhibition in rat myocardial infarction. Circ. Res. 62, 641–650.

    PubMed  CAS  Google Scholar 

  36. van Krimpen, C., Schoemaker, R. G., Cleutjens, J. P. M., Smits, J. F. M., Struyker-Boudier, H. A. J., Bosman, F. T., and Daemen, M. J. A. P. (1991) Angiotensin I converting enzyme inhibitors and cardiac remodeling. Basic Res. Cardiol. 86, 149–155.

    PubMed  Google Scholar 

  37. Smits, J. F. M., van Krimpen, C., Schoemaker, R. G., Cleutjens, J. P. M., and Daemen, M. J. A. P. (1992) Angiotensin II receptor blockade after myocardial infarction in rats: effects on hemodynamics, myocardial DNA synthesis, and interstitial collagen content. J. Cardiovasc. Pharmacol. 20, 772–778.

    PubMed  CAS  Google Scholar 

  38. Hodsman, G. P., Kohzuki, M., Howes, L. G., Sumithran, E., Tsunoda, K., and Johnston, C. I. (1988) Neurohumoral responses to chronic myocardial infarction in rats. Circulation 78, 376–381.

    PubMed  CAS  Google Scholar 

  39. Hirsch, A. T., Talsness, C. E., Schunkert, H., Paul, M., and Dzau, V. J. (1991) Tissue-specific activation of cardiac angiotensin converting enzyme in experimental heart failure. Circ. Res. 69, 475–482.

    PubMed  CAS  Google Scholar 

  40. Sun, Y., Ratajska, A., Zhou, G., and Weber, K. T. (1993) Angiotensin converting enzyme and myocardial fibrosis in the rat receiving angiotensin II or aldosterone. J. Lab. Clin. Med. 122, 395–403.

    PubMed  CAS  Google Scholar 

  41. Young, M., Fullerton, M., Dilley, R., and Funder, J. (1994) Mineralocorticoids, hypertension, and cardiac fibrosis. J. Clin. Invest. 93, 2578–2583.

    Article  PubMed  CAS  Google Scholar 

  42. Sun, Y., Ramires, F. J. A., and Weber, K. T. (1997) Fibrosis of atria and great vessels in response to angiotensin II or aldosterone infusion. Cardiovasc. Res. 35, 138–147.

    Article  PubMed  CAS  Google Scholar 

  43. Campbell, S. E., Janicki, J. S., and Weber, K. T. (1995) Temporal differences in fibroblast proliferation and phenotype expression in response to chronic administration of angiotensin II or aldosterone. J. Mol. Cell. Cardiol. 27, 1545–1560.

    Article  PubMed  CAS  Google Scholar 

  44. Sun, Y., Zhang, J., Lu, L., Chen, S. S., Quinn, M. T., and Weber, K. T. (2002) Aldosterone-induced inflammation in the rat heart. iRole of oxidative stress. Am. J. Pathol. 161, 1773–1781.

    Article  PubMed  CAS  Google Scholar 

  45. Ahokas, R. A., Warrington, K. J., Gerling, I. C., et al. (2003) Aldosteronism and peripheral blood mononuclear cell activation. A neuroendocrine-immune interface. Circ. Res. 93, e124–e135.

    Article  PubMed  CAS  Google Scholar 

  46. Gerling, I. C., Sun, Y., Ahokas, R. A., Wodi, L. A., et al. (2003) Aldosteronism: an immunostimulatory state precedes the proinflammatory/fibrogenic cardiac phenotype. Am. J. Physiol. Heart Circ. Physiol. 285, H813–H821.

    PubMed  CAS  Google Scholar 

  47. Rousseau-Plasse, A., Lenfant, M., and Potier, P. (1996) Catabolism of the hemoregulatory peptide N-Acetyl-Ser-Asp-Lys-Pro: a new insight into the physiological role of the angiotensin-I-converting enzyme N-active site. Bioorg. Med. Chem. 4, 1113–1119.

    Article  PubMed  CAS  Google Scholar 

  48. Sun, Y., Zhang, J., Lu, L., Bedigian, M. P., Robinson, A. D., and Weber, K. T. (2004)Tissue angiotensin II in the regulation of inflammatory and fibrogenic components of repair in the rat heart. J. Lab. Clin. Med., in press.

    Google Scholar 

  49. Robert, V., Heymes, C., Silvestre, J.-S., Sabri, A., Swynghedauw, B., and Delcayre, C. (1999) Angiotensin AT1 receptor subtype as a cardiac target of aldosterone. Role in aldosterone-salt-induced fibrosis. Hypertension 33, 981–986.

    CAS  Google Scholar 

  50. Tan, L. B., Jalil, J. E., Pick, R., Janicki, J. S., and Weber, K. T. (1991) Cardiac myocyte necrosis induced by angiotensin II. Circ. Res. 69, 1185–1195.

    PubMed  CAS  Google Scholar 

  51. Sun, Y., Ratajska, A., and Weber, K. T. (1995) Inhibition of angiotensin-converting enzyme and attenuation of myocardial fibrosis by lisinopril in rats receiving angiotensin II. J. Lab. Clin. Med. 126, 95–101.

    PubMed  CAS  Google Scholar 

  52. Brilla, C. G., Pick, R., Tan, L. B., Janicki, J. S., and Weber, K. T. (1990) Remodeling of the rat right and left ventricle in experimental hypertension. Circ. Res. 67, 1355–1364.

    PubMed  CAS  Google Scholar 

  53. Everett, A. D., Tufro-McReddie, A., Fisher, A., and Gomez, R. A. (1994) Angiotensin receptor regulates cardiac hypertrophy and transforming growth factor-β1 expression. Hypertension 23, 587–592.

    PubMed  CAS  Google Scholar 

  54. Rupérez, M., Ruiz-Ortega, M., Esteban, V., Lorenzo, O., Mezzano, S., Plaza, J. J., and Egido, J. ((2003) Angiotensin II increases connective tissue growth factor in the kidney. Am. J. Pathol. 163, 1937–1947.

    Article  PubMed  Google Scholar 

  55. Wang, H. D., Xu, S., Johns, D. G., Du, Y., Quinn, M. T., Cayatte, A. J., and Cohen, R. A. (2001) Role of NADPH oxidase in the vascular hypertrophic and oxidative stress response to angiotensin II in mice. Circ. Res. 88, 947–953.

    Article  PubMed  CAS  Google Scholar 

  56. Harrison, D. G., Cai, H., Landmesser, U., and Griendling, K. K. (2003) Interactions of angiotensin II with NAD(P)H oxidase, oxidant stress and cardiovascular disease. J. Renin Angiotensin Aldosterone Syst. 4, 51–61.

    Article  PubMed  CAS  Google Scholar 

  57. Barnes, P. J. and Karin, M. (1997) Nuclear factor-κB: a pivotal transcription factor in chronic inflammatory diseases. N. Engl. J. Med. 336, 1066–1071.

    Article  PubMed  CAS  Google Scholar 

  58. Muller, D. N., Dechend, R., Mervaala, E. M., et al. (2000) NF-κB inhibition ameliorates angiotensin II-induced inflammatory damage in rats. Hypertension 35, 193–201.

    PubMed  CAS  Google Scholar 

  59. Lijnen, P. J., Petrov, V. V., and Fagard, R. H. (2001) Angiotensin II-induced stimulation of collagen secretion and production in cardiac fibroblasts is mediated via angiotensin II subtype 1 receptors. J. Renin Angiotensin Aldosterone Syst. 2, 117–122.

    PubMed  CAS  Google Scholar 

  60. Lijnen, P. J. and Petrov, V. V. (2003) Role of intracardiac renin-angiotensin-aldosterone system in extracellular matrix remodeling. Methods Find. Exp. Clin. Pharmacol. 25, 541–564.

    Article  PubMed  CAS  Google Scholar 

  61. Sun, Y. and Weber, K. T. (1996) Angiotensin-converting enzyme and wound healing in diverse tissues of the rat. J. Lab. Clin. Med. 127, 94–101.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by National Institutes of Health National Heart, Lung, and Blood Institute grants R01-HL67888 (to Y.S.), and R01-HL62229 (to K.T.W.), and grants from the University of Tennessee Health Science Center Center of Excellence in Connective Tissue Diseases (to Y.S. and K.T.W.).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc.

About this protocol

Cite this protocol

Sun, Y., Weber, K.T. (2005). Animal Models of Cardiac Fibrosis. In: Varga, J., Brenner, D.A., Phan, S.H. (eds) Fibrosis Research. Methods in Molecular Medicine, vol 117. Humana Press. https://doi.org/10.1385/1-59259-940-0:273

Download citation

  • DOI: https://doi.org/10.1385/1-59259-940-0:273

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-479-1

  • Online ISBN: 978-1-59259-940-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics