Skip to main content

Principles of Biopharmaceutical Protein Formulation

An Overview

  • Protocol
Therapeutic Proteins

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 308))

  • 2536 Accesses

Abstract

Ideally, formulation development of biopharmaceutical protein therapeutics will provide a final dosage form that offers sufficient ex vivo stability during processing, handling, and long-term storage and also provide adequate in vivo stability in terms of bioavailability that meets the pharmacokinetics/pharmacodynamics (PK/PD) therapeutic requirements. This chapter focuses on ex vivo stability of protein therapeutics and is targeted for the novice researcher who struggles with the inherent instabilities of biological molecules. More important, this chapter provides the inexperienced formulators with fundamental understanding and the basic tools for formulation development of biopharmaceutical proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hageman, M. J. Water sorption and solid-state stability of proteins, in Stability of Protein Pharmaceuticals, Part A: Chemical and Physical Pathways of Protein Degradation (Ahern, T. J. and Manning, M. C., eds.), Plenum Press, New York, NY, 1992, pp. 273–309.

    Google Scholar 

  2. Sapan, C. V., Lundblad, R. L., and Pace, N. C. (1999) Colorimetric protein assay techniques. Biotechnol. Appl. Biochem. 29, 99–108.

    PubMed  CAS  Google Scholar 

  3. Donovan, J. W. (1973) Ultraviolet difference spectroscopy—new techniques and applications. Methods Enzymol. 27, 497–525.

    Article  PubMed  CAS  Google Scholar 

  4. Balestrieri, C., Colonna, G., Giovane, A., Irace, G., and Servillo, L. (1978) Secondderivative spectroscopy of proteins. A method for the quantitative determination of aromatic amino acids in proteins. Eur. J. Biochem. 90, 433–440.

    Article  PubMed  CAS  Google Scholar 

  5. Thomson, J. A., Shirley, B. A., Grimsley, G. R., and Pace, C. N. (1989) Conformational stability and mechanism of folding of ribonuclease T1. J. Biol. Chem. 264, 11614–11620.

    PubMed  CAS  Google Scholar 

  6. Dong, A., Kendrick, B., Kreilgard, L., Matsuura, J., Manning, M. C., and Carpenter, J. F. (1997) Spectroscopic study of secondary structure and thermal denaturation of recombinant human factor XIII in aqueous solution. Arch. Biochem. Biophys. 347, 213–220.

    Article  PubMed  CAS  Google Scholar 

  7. Kelly, S. M. and Price, N. C. (2000) The use of circular dichroism in the investigation of protein structure and function. Curr. Protein Pept. Sci. 1, 349–384.

    Article  PubMed  CAS  Google Scholar 

  8. Dong, A. and Caughey, W. S. (1994) Infrared methods for study of hemoglobin reactions and structures. Methods Enzymol. 232, 139–175.

    Article  PubMed  CAS  Google Scholar 

  9. Dong, A., Huang, P., and Caughey, W. S. (1990) Protein secondary structures in water from second-derivative amide I infrared spectra. Biochemistry 29, 3303–3308.

    Article  PubMed  CAS  Google Scholar 

  10. Dong, A., Prestrelski, S. J., Allison, S. D., and Carpenter, J. F. (1995) Infrared spectroscopic studies of lyophilization-and temperature-induced protein aggregation. J. Pharm. Sci. 84, 415–424.

    Article  PubMed  CAS  Google Scholar 

  11. Carpenter, J. F., Prestrelski, S. J., and Dong, A. (1998) Application of infrared spectroscopy to development of stable lyophilized protein formulations. Eur. J. Pharm. Biopharm. 45, 231–238.

    Article  PubMed  CAS  Google Scholar 

  12. Cleland, J. L., Lam, X., Kendrick, B., Yang, J., Yang, T. H., Overcashier, D., et al. (2001) A specific molar ratio of stabilizer to protein is required for storage stability of a lyophilized monoclonal antibody. J. Pharm. Sci. 90, 301–321.

    Article  Google Scholar 

  13. Gu, L. C., Erdos, E. A., Chiang, H. S., Calderwood, T., Tsai, K., Visor, G. C., et al. (1991) Stability of interleukin 1 beta (IL-1 beta) in aqueous solution: analytical methods, kinetics, products, and solution formulation implications. Pharm. Res. 8, 485–490.

    Article  PubMed  CAS  Google Scholar 

  14. Cleland, J. L., Powell, M. F., and Shire S. J. (1993) The development of stable protein formulations: a close look at protein aggregation, deamidation, and oxidation. Crit. Rev. Ther. Drug Carrier Syst. 10, 307–377.

    PubMed  CAS  Google Scholar 

  15. Manning, M. C., Patel, K., and Borchardt, R. T. (1989) Stability of protein pharmaceuticals. Pharm. Res. 6, 903–918.

    Article  PubMed  CAS  Google Scholar 

  16. Shire, S. J. Stability characterization and formulation development of recombinant human deoxyribonuclease I [Pulmozyme®, (Dornase Alpha)], in Formulation, Characterization, and Stability of Protein Drugs (Pearlman, R. and Wang, R. J., eds.), Plenum Press, New York, NY, 1996, pp.393–426.

    Google Scholar 

  17. Pace, C. N. (1974) The stability of globular proteins. CRC Crit. Rev. Biochem. 3, 1–43.

    Article  Google Scholar 

  18. Lee, J. C. and Timasheff, S. N. (1981) The stabilization of proteins by sucrose. J. Biol. Chem. 256, 7193–7201.

    PubMed  CAS  Google Scholar 

  19. Kendrick, B. S., Chang, B. S., Arakawa, T., Peterson, B., Randolph, T. W., Manning, M. C., and Carpenter, J. F. (1997) Preferential exclusion of sucrose from recombinant interleukin-1 receptor antagonist: role in restricted conformational mobility and compaction of native state. Proc. Natl. Acad. Sci. 94, 11917–11922.

    Article  PubMed  CAS  Google Scholar 

  20. Norde, W. and Lyklema, J. (1991) Why proteins prefer interfaces. J. Biomater. Sci. Polym. Ed. 2, 183–202.

    PubMed  CAS  Google Scholar 

  21. Sluzky, V., Tamada, J. A., Klibanov, A. M., and Langer, R. (1991) Kinetics of insulin aggregation in aqueous solutions upon agitation in the presence of hydrophobic surfaces. Proc. Natl. Acad. Sci. 88, 9377–9381.

    Article  PubMed  CAS  Google Scholar 

  22. Bam, N. B., Cleland, J. L., Yang, J., Manning, M. C., Carpenter, J. F., Kelley, R. F., and Randolph, T. W. (1998) Tween protects recombinant human growth hormone against agitation-induced damage via hydrophobic interactions. J. Pharm. Sci. 87, 1554–1559.

    Article  PubMed  CAS  Google Scholar 

  23. Charman, S. A., Mason, K. L., and Charman, W. N. (1993) Techniques for assessing the effects of pharmaceutical excipients on the aggregation of porcine growth hormone. Pharm. Res. 10, 954–962.

    Article  PubMed  CAS  Google Scholar 

  24. Tandon, S. and Horowitz, P. M. (1989) Reversible folding of rhodanese. Presence of intermediate(s) at equilibrium. J. Biol. Chem. 264, 9859–9866.

    PubMed  CAS  Google Scholar 

  25. Cleland, J. L. and Randolph, T. W. (1992) Mechanism of polyethylene glycol interaction with the molten globule folding intermediate of bovine carbonic anhydrase B. J. Biol. Chem. 267, 3147–3153.

    PubMed  CAS  Google Scholar 

  26. Suelter, C. H. and DeLuca, M. (1983) How to prevent losses of protein by adsorption to glass and plastic. Anal. Biochem. 135, 112–119.

    Article  PubMed  CAS  Google Scholar 

  27. Sato, S., Ebert, C. D., and Kim, S. W. (1984) Prevention of insulin self-association and surface adsorption. J. Pharm. Sci. 72, 228–232.

    Article  Google Scholar 

  28. Strambini, G. B. and Gabellieri, E. (1996) Proteins in frozen solutions: evidence of iceinduced partial unfolding. Biophys. J. 70, 971–976.

    Article  PubMed  CAS  Google Scholar 

  29. Chang, B. S., Kendrick, B. S., and Carpenter, J. F. (1996) Surface-induced denaturation of proteins during freezing and its inhibition by surfactants. J. Pharm. Sci. 85, 1325–1330.

    Article  PubMed  CAS  Google Scholar 

  30. Carpenter, J. F. and Crowe, J. H. (1988) The mechanism of cryoprotection of proteins by solutes. Criobiology 25, 244–255.

    Article  CAS  Google Scholar 

  31. Kerwin, B. A., Heller, M. C., Levin, S. H., and Randolph, T. W. (1998) Effects of Tween 80 and sucrose on acute short-term stability and long-term storage at −20°C of a recombinant hemoglobin. J. Pharm. Sci. 87, 1062–1068.

    Article  PubMed  CAS  Google Scholar 

  32. Webb, S. D., Golledge, S. L., Cleland, J. L., Carpenter, J. F., and Randolph, T. W. (2002) Surface adsorption of recombinant human interferon-gamma in lyophilized and spraylyophilized formulations. J. Pharm. Sci. 91, 1474–1487.

    Article  PubMed  CAS  Google Scholar 

  33. van den Berg, L. and Rose, D. (1959) Effect of freezing on the pH and composition of sodium and potassium phosphate solutions; the reciprocal system KH2PO4-Na2-HPO4-H2O. Arch. Biochem. Biophys. 81, 319–329.

    Article  Google Scholar 

  34. Arakawa, T. and Timasheff, S. N. (1985) Theory of protein solubility. Methods Enzymol. 114, 49–79.

    Article  PubMed  CAS  Google Scholar 

  35. Carpenter, J. F. and Chang, B. S. Lyophilization of protein pharmaceuticals, in Biotechnology and Biopharmaceutical Manufacturing, Processing, and Preservation (Avis, K. E. and Wu, V. L., eds.), Interpharm Press, Buffalo Grove, IL, 1996, pp. 199–264.

    Google Scholar 

  36. Prestrelski, S. J., Pikal, K. A., and Arakawa, T. (1995) Optimization of lyophilization conditions for recombinant human interleukin-2 by dried-state conformational analysis using Fourier-transform infrared spectroscopy. Pharm. Res. 12, 1250–1259.

    Article  PubMed  CAS  Google Scholar 

  37. Chang, B. S., Beauvais, R. M., Dong, A., and Carpenter, J. F. (1996) Physical factors affecting the storage stability of freeze-dried interleukin-1 receptor antagonist: glass transition and protein conformation. Arch. Biochem. Biophys. 331, 249–258.

    Article  PubMed  CAS  Google Scholar 

  38. Pikal, M. J. (1990) Freeze-drying of proteins, part 1: process design. BioPharm 3, 18–27.

    CAS  Google Scholar 

  39. Pikal, M. J. Freeze-drying of proteins, in Formulation and Delivery of Proteins and Peptides (Cleland, J. L. and Langer, R., eds.), ACS Symposium Series, vol. 567, 1994, pp. 120–133.

    Google Scholar 

  40. Carpenter, J. F., Pikal, M. J., Chang, B. S., and Randolph, T. W. (1997) Rational design of stable lyophilized protein formulations: some practical advice. Pharm. Res. 14, 969–975.

    Article  PubMed  CAS  Google Scholar 

  41. Sellers, S. P., Clark, G. S., Sievers, R. E., and Carpenter, J. F. (2001) Dry Powders of stable protein formulations from aqueous solutions prepared using supercritical CO2-assisted aerosolization. J. Pharm. Sci. 90, 785–797.

    Article  PubMed  CAS  Google Scholar 

  42. Prestrelski, S. J., Arakawa, T., and Carpenter, J. F. (1993) Separation of freezing-and drying-induced denaturation of lyophilized proteins using stress-specific stabilization. II. Structural studies using infrared spectroscopy. Arch. Biochem. Biophys. 303, 465–473.

    Article  PubMed  CAS  Google Scholar 

  43. Carpenter, J. F. and Crowe, J. H. (1989) An infrared spectroscopic study of the interactions of carbohydrates with dried proteins. Biochemistry 28, 3916–3922.

    Article  PubMed  CAS  Google Scholar 

  44. Crowe, J. H., Carpenter, J. F., and Crowe, L. M. (1998) The role of vitrification in anhydrobiosis. Annu. Rev. Physiol. 60, 73–103.

    Article  PubMed  CAS  Google Scholar 

  45. Franks, F., Hatley, R. H. M., and Mathias, S. F. (1991) Material science and the production of shelf stable biologicals. BioPharm 4, 38–55.

    CAS  Google Scholar 

  46. Pikal, M. J., Dellerman, K. M., Roy, M. L., and Riggin, R. M. (1991) The effects of formulation variables on the stability of freeze-dried human growth hormone. Pharm. Res. 8, 427–436.

    Article  PubMed  CAS  Google Scholar 

  47. Pikal, M. J. (1990) Freeze-drying of proteins, part II: formulation selection. BioPharm. 3, 26–30.

    CAS  Google Scholar 

  48. MacKenzie, A. P. quantitative aspects, in Freeze-drying and Advanced Food Technology (Goldblith, S. A., Rey, L., and Rothmayr, W. W., eds.), Academic Press, NY, 1975, pp. 277–307.

    Google Scholar 

  49. Levine, H. and Slade, L. (1988) Principles of “cryostabilization” technology from structure/ property relationships of carbohydrate/water systems—a review. Cryoletters 9, 21–63.

    CAS  Google Scholar 

  50. Levine, H. and Slade, L. (1988) Thermomechanical properties of small-carbohydrate-water glasses and “rubbers”: Kinetically metastable systems at subzero temperatures. Pure Appl. Chem. 60, 1841–1864.

    Article  Google Scholar 

  51. Chang, B. S. and Randall, C. S. (1992) Use of subambient thermal analysis to optimize protein lyophilization. Cryobiology 29, 632–656.

    Article  CAS  Google Scholar 

  52. Hancock, B. C. and Zografi, G. (1994) The relationship between the glass transition temperature and the water content of amorphous pharmaceutical solids. Pharm. Res. 11, 471–477.

    Article  PubMed  CAS  Google Scholar 

  53. Franks, F. (1990) Freeze-drying: from empiricism to predictability. Cryoletters 11, 93–110.

    Google Scholar 

  54. Geigert, J. and Ghrist, B. F. D. shelf-life determination of recombinant human granulocyte-macrophage colony stimulating factor (Leukine®, GM-CSF), in Formulation, Characterization, and Stability of Protein Drugs, (Pearlman, R. and Wang, Y. J., eds.), Plenum Press, New York, NY, 1996, pp 329–342.

    Google Scholar 

  55. Chen, B., Bautista, R., Yu, K., Zapata, G. A., Mulkerrin, M. G., and Chamow, S. M. (2003) Influence of histidine on the stability and physical properties of a fully human antibody in aqueous and solid forms. Pharm. Res. 20, 1952–1960.

    Article  PubMed  CAS  Google Scholar 

  56. Hill, J. B. (1959) Adsorption of insulin to glass. Proc. Soc. Exp. Biol. Med. 102, 75–77.

    PubMed  CAS  Google Scholar 

  57. Schwarzenbach, M. S., Reimann, P., Thommen, V., Hegner, M., Mumenthaler, M., Schwob, J., and Guntherodt, H. J. (2002) Interferon alpha-2a interactions on glass vial surfaces measured by atomic force microscopy. PDA J. Pharm. Sci. Technol. 56, 78–89.

    PubMed  CAS  Google Scholar 

  58. Leach, S. J. and Scheraga, H. A. (1960) Effect of light scattering on ultraviolet difference spectra. J. Am. Chem. Soc. 82, 4790–4792.

    Article  CAS  Google Scholar 

  59. Pace, N. C., Vajdos, F., Fee, L., Grimsley, G., and Gray, T. (1995) How to measure and predict the molar absorption coefficient of a protein. Protein Sci. 4, 2411–2423.

    Article  PubMed  CAS  Google Scholar 

  60. Gekko, K. and Timasheff, S. N. (1981) Thermodynamic and kinetic examination of protein stabilization by glycerol. Biochemistry 20, 4677–4686.

    Article  PubMed  CAS  Google Scholar 

  61. Lee, L. L. and Lee, J. C. (1987) Thermal stability of proteins in the presence of poly(ethylene glycols). Biochemistry 26, 7813–7819.

    Article  PubMed  CAS  Google Scholar 

  62. Fakes, M. G., Dali, M. V., Haby, T. A., Morris, K. R., Varia, S. A., and Serajuddin, A. T. (2000) Moisture sorption behavior of selected bulking agents used in lyophilized products. PDA J. Pharm. Sci. Technol. 54, 144–149.

    PubMed  CAS  Google Scholar 

  63. Yu, L., Milton, N., Groleau, E. G., Mishra, D. S., and Vansickle, R. E. (1998) Existence of a mannitol hydrate during freeze-drying and practical implications. J. Pharm. Sci. 88, 196–198.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc.

About this protocol

Cite this protocol

Sellers, S.P., Maa, YF. (2005). Principles of Biopharmaceutical Protein Formulation. In: Smales, C.M., James, D.C. (eds) Therapeutic Proteins. Methods in Molecular Biology™, vol 308. Humana Press. https://doi.org/10.1385/1-59259-922-2:243

Download citation

  • DOI: https://doi.org/10.1385/1-59259-922-2:243

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-390-9

  • Online ISBN: 978-1-59259-922-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics