Skip to main content

Determination of Telomerase Activity and Telomere Length

  • Protocol
Multiple Myeloma

Part of the book series: Methods in Molecular Medicineā„¢ ((MIMM,volume 113))

  • 723 Accesses

Abstract

Telomerase is an enzyme that has been attracting much attention in recent years because its activities are so central to the processes of malignant transformation. It is a reverse transcriptase enzyme that can synthesize telomeric DNA using its own RNA component as a template. Without telomerase, telomeres will shorten until, at a critical length, cells enter senescence and die. The low level or absence of telomerase activity in most nonneoplastic tissues and somatic cells, and its presence in almost all malignant tumors is thus of great interest for potential diagnostic, prognostic, and therapeutic applications in the management of human cancer. It has been documented that high telomerase activity and short telomere length correlate with poor prognosis in patients with multiple myeloma, and antitelomerase therapy has become a novel therapeutic approach for the disease. Thus, determination of telomerase activity and telomere length is essential in the study of cancer. In this chapter, we provide a standard telomeric repeat amplification protocol for telomerase activity assay and a Southern blot terminal restriction fragment protocol for telomere length assay. We also discuss comparison with related assay methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lansdorp P. M., Verwoerd N. P., van de Rijke F. M., et al. (1996) Heterogeneity in telomere length of human chromosomes. Hum. Mol. Genet. 5, 685ā€“691.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  2. Sandell L. L. and Zakian V. A. (1993) Loss of a yeast telomere: arrest, recovery, and chromosome loss. Cell 75, 729ā€“739.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  3. Kirk K. E., Harmon B. P., Reichardt I. K., Sedat J. W., and Blackburn E. H. (1997) Block in anaphase chromosome separation caused by a telomerase template mutation. Science 275, 1478ā€“1481.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  4. Watson J. D. (1972) Origin of concatemeric T7 DNA. Nat. N. Biol. 239, 197ā€“201.

    ArticleĀ  CASĀ  Google ScholarĀ 

  5. Collins K. and Mitchell J. R. (2002) Telomerase in the human organism. Oncogene 21, 564ā€“579.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  6. Harley C. B. (2002) Telomerase is not an oncogene. Oncogene 21, 494ā€“502.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  7. MacKenzie K. L., Franco S., Naiyer A. J., et al. (2002) Multiple stages of malignant transformation of human endothelial cells modelled by co-expression of telomerase reverse transcriptase, SV40 T antigen and oncogenic N-ras. Oncogene 21, 4200ā€“4211.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  8. Wu K. D., Orme L. M., Shaughnessy J., Jr., Jacobson J., Barlogie B., and Moore M. A. (2003) Telomerase and telomere length in multiple myeloma: correlations with disease heterogeneity, cytogenetic status, and overall survival. Blood 101, 4982ā€“4989.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  9. Xu D., Zheng C., Bergenbrant S., et al. (2001) Telomerase activity in plasma cell dyscrasias. Br. J. Cancer 84, 621ā€“625.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  10. Shiratsuchi M., Muta K., Abe Y., et al. (2002) Clinical significance of telomerase activity in multiple myeloma. Cancer 94, 2232ā€“2238.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  11. Wang E. S., Wu K., Chin A. C., et al. (2004) Telomerase inhibition with an oligonucleotide telomerase template antagonist: in vitro and in vivo studies in multiple myeloma and lymphoma. Blood 103, 258ā€“266.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  12. Akiyama M., Hideshima T., Shammas M. A., et al. (2003) Effects of oligonucleotide N3'ā†’P5' thio-phosphoramidate (GRN163) targeting telomerase RNA in human multiple myeloma cells. Cancer Res. 63, 6187ā€“6194.

    PubMedĀ  CASĀ  Google ScholarĀ 

  13. Kim N. W., Piatyszek M. A., Prowse K. R., et al. (1994) Specific association of human telomerase activity with immortal cells and cancer. Science 266, 2011ā€“2015.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  14. Wright W. E., Shay J. W., and Piatyszek M. A. (1995) Modifications of a telomeric repeat amplification protocol (TRAP) result in increased reliability, linearity and sensitivity. Nucleic Acids Res. 23, 3794ā€“3795.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  15. Allsopp R. C., Vaziri H., Patterson C, et al. (1992) Telomere length predicts replicative capacity of human fibroblasts. Proc. Natl. Acad. Sci. USA 89, 10,114ā€“10,118.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  16. Allshire R. C., Dempster M., and Hastie N. D. (1989) Human telomeres contain at least three types of G-rich repeats distributed non-randomly. Nucleic Acids Res. 17, 4611ā€“4627.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  17. Harley C., Futcher A., and Greider C. (1990) Telomeres shorten during ageing of human fibroblasts. Nature 345, 458ā€“460.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  18. de Lange T., Shiue L., Myers R. M., et al. (1990) Structure and variability of human chromosome ends. Mol. Cell Biol. 10, 518ā€“527.

    PubMedĀ  Google ScholarĀ 

  19. Feng Y. R., Biggar R. J., Gee D., Norwood D., Zeichner S. L., and Dimitrov D. S. (1999) Long-term telomere dynamics: modest increase of cell turnover in HIV-infected individuals followed for up to 14 years. Pathobiology 67, 34ā€“38.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  20. Norwood D. and Dimitrov D. S. (1998) Sensitive method for measuring telomere lengths by quantifying telomeric DNA content of whole cells. Biotechniques 25, 1040ā€“1045.

    PubMedĀ  CASĀ  Google ScholarĀ 

  21. Rufer N., Dragowska W., Thornbury G., Roosnek E., and Lansdorp P. M. (1998) Telomere length dynamics in human lymphocyte subpopulations measured by flow cytometry. Nat. Biotechnol. 16, 743ā€“747.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  22. Baerlocher G. M., Mak J., Tien T., and Lansdorp P. M. (2002) Telomere length measurement by fluorescence in situ hybridization and flow cytometry: tips and pitfalls. Cytometry 47, 89ā€“99.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  23. Lauzon W., Dardon S. J., Cameron D. W., and Badley A. D. (2000) Flow cytometric measurement of telomere length. Cytometry 42, 159ā€“164.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2005 Humana Press Inc.

About this protocol

Cite this protocol

Wu, Kd., Moore, M.A.S. (2005). Determination of Telomerase Activity and Telomere Length. In: Brown, R.D., Ho, P.J. (eds) Multiple Myeloma. Methods in Molecular Medicineā„¢, vol 113. Humana Press. https://doi.org/10.1385/1-59259-916-8:207

Download citation

  • DOI: https://doi.org/10.1385/1-59259-916-8:207

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-392-3

  • Online ISBN: 978-1-59259-916-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics