Skip to main content

High-Throughput Peptide Synthesis

  • Protocol
Peptide Synthesis and Applications

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 298))

Abstract

The methodologies of high-throughput peptide synthesis are overviewed and discussed. Particular focus is given to the techniques applicable to laboratories with a limited budget. Automated solutions for synthetic problems are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lander, E. S., Linton, L. M., Birren, B., et al. (2001) Initial sequencing and analysis of the human genome. Nature 409, 860.

    Article  PubMed  CAS  Google Scholar 

  2. Venter, J. C., Adams, M. D., Myers, E. W., et al. (2001) The sequence of the human genome. Science 291, 1304.

    Article  PubMed  CAS  Google Scholar 

  3. Aebersold, R. (2003) Constellations in a cellular universe. Nature 422,115–117.

    Article  PubMed  CAS  Google Scholar 

  4. Turecek, F. (2002) Mass spectrometry in coupling with affinity capture-release and isotope-coded affinity tags for quantitative protein analysis. J. Mass Spectrom. 37, 1–14.

    Article  PubMed  CAS  Google Scholar 

  5. Merrifield, R. B. (1963) Solid phase peptide synthesis. I. The synthesis of a tetra-peptide. J. Amer. Chem. Soc. 85, 2149–2154.

    Article  CAS  Google Scholar 

  6. Merrifield, R. B. (1985) Solid phase synthesis (Nobel lecture). Angew. Chem. Int. Ed. 24, 79–810.

    Google Scholar 

  7. Merrifield, R. B. (1986) Solid phase peptide synthesis. Science 232, 341–347.

    Article  PubMed  CAS  Google Scholar 

  8. Merrifield, R. B. (1993) Life During a Golden Age of Peptide Chemistry: The Concept and Development of Solid-Phase Peptide Synthesis. American Chemi-cal Society, Washington, DC, pp. 1–297.

    Google Scholar 

  9. Merrifield, B. (1997) Concept and early development of solid-phase peptide synthesis. Methods Enzymol. 289, 3–13.

    Article  PubMed  CAS  Google Scholar 

  10. Lam, K. S., Salmon, S. E., Hersh, E. M., Hruby, V. J., Kazmierski, W. M., and Knapp, R. J. (1991) A new type of synthetic peptide library for identifying ligand-binding activity. Nature 354, 82–84.

    Article  PubMed  CAS  Google Scholar 

  11. Lam, K. S., Lebl, M., and Krchnak, V. (1997) The /ldone-bead one-compound/rd combinatorial library method. Chem. Rev. 97, 411–448.

    Article  PubMed  CAS  Google Scholar 

  12. Valerio, R. M., Bray, A. M., Campbell, R. A., et al. (1993) Multipin peptide synthesis at the micromole scale using 2-hydroxyethyl methacrylate grafted polyethylene supports. Int. J. Peptide Prot. Res. 42, 1–9.

    Article  CAS  Google Scholar 

  13. Geysen, H. M., Meloen, R. H., and Barteling, S. J. (1984) Use of peptide synthesis to probe viral antigens for epitopes to a resolution of a single amino acid. Proc. Natl. Acad. Sci. USA 81, 3998–4002.

    Article  PubMed  CAS  Google Scholar 

  14. Bray, A. M., Maeji, N. J., and Geysen, H. M. (1990) The simultaneous multiple production of solution phase peptides; assesment of the Geysen method of simul-taneous peptide synthesis. Tetrahedron Lett. 31, 5811–5814.

    Article  CAS  Google Scholar 

  15. Maeji, N. J., Valerio, R. M., Bray, A. M., Campbell, R. A., and Geysen, H. M. (1994) Grafted supports used with the multipin method of peptide synthesis. React. Polym. 22, 203–212.

    Article  CAS  Google Scholar 

  16. Carter, J. M., VanAlbert, S., Lee, J., Lyon, J., and Deal, C. (1992) Shedding light on peptide synthesis. Biotechnology 10, 509–513.

    Article  PubMed  CAS  Google Scholar 

  17. Rasoul, F., Ercole, F., Pham, Y., et al. (2000) Grafted supports in solid-phase synthesis. Biopolymers (Pept. Sci.) 55, 207–216.

    Article  CAS  Google Scholar 

  18. Houghten, R. A. (1985) General method for the rapid solid-phase synthesis of large numbers of peptides: Specificity of antigen-antibody interaction at the level of individual amino acids. Proc. Natl. Acad. Sci. USA 82, 5131–5135.

    Article  PubMed  CAS  Google Scholar 

  19. Houghten, R. A., DeGraw, S. T., Bray, M. K., Hoffmann, S. R., and Frizzell, N. D. (1986) Simultaneous multiple peptide synthesis: The rapid preparation of large numbers of discrete peptides for biological, immunological, and methodological studies. BioTechniques 4, 522–528.

    Article  CAS  Google Scholar 

  20. Xiao, X., Zhao, C., Potash, H., and Nova, M. P. (1997) Combinatorial chemistry with laser optical encoding. Angew. Chem. Int. Ed. 36, 780–782.

    Article  CAS  Google Scholar 

  21. Nicolaou, K. C., Xiao, X. Y., Parandoosh, Z., Senyei, A., and Nova, M. P. (1995) Radiofrequency encoded combinatorial chemistry. Angew. Chem. Int. Ed. 34, 2289–2291.

    Article  CAS  Google Scholar 

  22. Moran, E. J., Sarshar, S., Cargill, J. F., et al. (1995) Radio frequency tag encoded combinatorial library method for the discovery of tripeptide-substituted cinnamic acid inhibitors of the protein tyrosine phosphatase PTP1B. J. Amer. Chem. Soc. 117, 10787–10788.

    Article  CAS  Google Scholar 

  23. Houghten, R. A., Bray, M. K., DeGraw, S. T., and Kirby, C. J. (1986) Simplified procedure for carrying out simultaneous hydrogen fluoride cleavages of protected peptide resins. Int. J. Peptide Prot. Res. 27, 673–678.

    Article  CAS  Google Scholar 

  24. Kerschen, A., Kanizsai, A., Botros, I., and Krchnak, V. (1999) Apparatus and method for cleavage of compounds from solid support by gaseous reagents. J. Comb. Chem. 1, 480–484.

    Article  CAS  Google Scholar 

  25. Lebl, M., Pires, J., Poncar, P., and Pokorny, V. (1999) Evaluation of gaseous hydrogen fluoride as a convenient reagent for parallel cleavage from the solid support. J. Comb. Chem. 1, 474–479.

    Article  PubMed  CAS  Google Scholar 

  26. Lebl, M., Krchnak, V., Ibrahim, G., et al. (1999) Solid-phase synthesis of large tetrahydroisoquinolinone arrays by two different approaches. Synthesis-Stuttgart 1971–1978.

    Google Scholar 

  27. Blankemeyer-Menge, B. and Frank, R. (1988) Simultaneous multiple synthesis of protected peptide fragments on allyl-functionalized cellulose disc supports. Tetrahedron Lett. 29, 5871–5874.

    Article  CAS  Google Scholar 

  28. Frank, R. and Doring, R. (1988) Simultaneous multiple peptide synthesis under continuous flow conditions on cellulose paper discs as segmental solid supports. Tetrahedron 44, 6031–6040.

    Article  CAS  Google Scholar 

  29. Frank, R., Heikens, W., Heisterberg-Moutsis, G., and Blocker, H. (1983) A new general approach for the simultaneous chemical synthesis of large numbers of oligonucleotides: Segmental solid supports. Nucl. Acid. Res. 11, 4365–4377.

    Article  CAS  Google Scholar 

  30. Dittrich, F., Tegge, W., and Frank, R. (1998) “Cut and combine”: An easy membrane-supported combinatorial synthesis technique. Bioorg. Med. Chem. Lett. 8, 2351–2356.

    Article  PubMed  CAS  Google Scholar 

  31. Eichler, J., Bienert, M., Stierandova, A., and Lebl, M. (1991) Evaluation of cotton as a carrier for solid phase peptide synthesis. Peptide Res. 4, 296–307.

    CAS  Google Scholar 

  32. Jezek, J., Rinnova, M., and Lebl, M. (1993) Simultaneous multiple peptide synthesis: Comparison of T-bags and cotton. In Peptides 1992, Proc.22.EPS (Schneider, C. H. and Eberle, A. N., eds.), ESCOM, Leiden, pp. 306–307.

    Google Scholar 

  33. Lebl, M. and Eichler, J. (1989) Simulation of continuous solid phase synthesis: Synthesis of methionine enkephalin and its analogs. Peptide Res. 2, 297–300.

    CAS  Google Scholar 

  34. Lebl, M. (1998) Solid-phase synthesis on planar supports. Biopolymers (Pept. Sci.) 47, 397–404.

    Article  CAS  Google Scholar 

  35. Stankova, M., Wade, S., Lam, K. S., and Lebl, M. (1994) Synthesis of combinatorial libraries with only one representation of each structure. Peptide Res. 7, 292–298.

    CAS  Google Scholar 

  36. Frank, R. (1992) SPOT synthesis: An easy technique for the positionally addres-sable, parallel chemical synthesis on a membrane support. Tetrahedron 48,9217–9232.

    Article  CAS  Google Scholar 

  37. Frank, R. and Overwin, H. (1996) SPOT synthesis. Epitope analysis with arrays of synthetic peptides prepared on cellulose membranes. Methods Mol. Biol. 66, 149–169.

    PubMed  CAS  Google Scholar 

  38. Frank, R., Hoffmann, S., Kiess, M., et al. (1996) Combinatorial synthesis on membrane supports by the SPOT technique: Imaging peptide sequence and shape space. In Combinatorial Peptide and Nonpeptide Libraries: A Handbook (Jung, G., ed.), VCH, Weinheim, Germany, pp. 363–386.

    Chapter  Google Scholar 

  39. Wenschuh, H., Volkmer-Engert, R., Schmidt, M., Schulz, M., Schneider-Mergener, J., and Reineke, U. (2000) Coherent membrane supports for parallel microsynthesis and screening of bioactive peptides. Biopolymers (Pept. Sci.) 55, 188–206.

    Article  CAS  Google Scholar 

  40. Koch, J. and Mahler, M., Eds. (2002) Peptide Arrays on Membrane Supports. Springer, Berlin.

    Google Scholar 

  41. Eichler, J., Houghten, R. A., and Lebl, M. (1996) Inclusion volume solid-phase peptide synthesis. J. Peptide Sci. 2, 240–244.

    Article  CAS  Google Scholar 

  42. Krchnak, V., Weichsel, A. S., Lebl, M., and Felder, S. (1997) Automated solidphase organic synthesis in micro-plate wells. Synthesis of N-(alkoxy-acyl)amino alcohols. Bioorg. Med. Chem. Lett. 7, 1013–1016.

    Article  CAS  Google Scholar 

  43. Wolfe, H. R. and Wilk, R. R. (1989) The RaMPS system: Simplified peptide synthesis for life science researchers. Peptide Res. 2, 352–356.

    CAS  Google Scholar 

  44. Krchnak, V., Vagner, J., Flegel, M., and Mach, O. (1987) Continuous-flow solidphase peptide synthesis. Tetrahedron Lett. 28, 4469–4472.

    Article  CAS  Google Scholar 

  45. Krchnak, V., Vagner, J., and Mach, O. (1989) Multiple continuous-flow solidphase peptide synthesis. Synthesis of an HIV antigenic peptide and its omission analogues. Int. J. Peptide Prot. Res. 33, 209–213.

    Article  CAS  Google Scholar 

  46. Krchnak, V. and Vagner, J. (1990) Color-monitored solid-phase multiple pep tide synthesis under low-pressure continuous flow conditions. Peptide Res. 3, 182–193.

    CAS  Google Scholar 

  47. Vagner, J., Kocna, P., and Krchnak, V. (1991) Continuous-flow synthesis of a gliadin peptides in an ultrasonic field and assay of their inhibition of intestinal sucrase activity. Peptide Res. 4, 284–288.

    CAS  Google Scholar 

  48. Krchnak, V. and Vagner, J. (1992) Prediction and handling of difficult sequences in solid-phase peptide synthesis. In Innovation and Perspectives in Solid Phase Synthesis. (Epton, R., ed.), Intercept, Andover,UK, pp. 414–415.

    Google Scholar 

  49. Lebl, M. and Krchnak, V. (1997) Synthetic peptide libraries. Methods Enzymol. 289, 336–392.

    Article  PubMed  CAS  Google Scholar 

  50. Baru, M. B., Cherskii, V. V., Danilov, A. V., Moshnikov, S. A., and Mustaeva, L. G. (1995) Automatic SynChrom system for solid phase peptide synthesis and liquid column chromatography. II. Application to solid phase peptide synthesis and liquid column chromatography. Russ. J. Bioorch. Chem. 21, 506–516.

    CAS  Google Scholar 

  51. Baru, M. B., Cherskii, V. V., Danilov, A. V., Moshnikov, S. A., and Mustaeva, L. G. (1995) Automatic SynChrom system for solid phase peptide synthesis and liquid column chromatography. I. Principles of design and structural constitu-ents. Russ. J. Bioorch. Chem. 21, 498–505.

    CAS  Google Scholar 

  52. Baru, M. B., Mustaeva, L. G., Vagenina, I. V., Gorbunova, E. Y., and Cherskii, V. V. (2001) Pressure monitoring of continuous-flow solid-phase peptide synthesis. J. Pept. Res. 57, 193–202.

    Article  PubMed  CAS  Google Scholar 

  53. Rodionov, I. L., Baru, M. B., and Ivanov, V. T. (1992) A swellographic approach to monitoring continuous-flow solidphase peptide synthesis. Peptide Res. 5, 119–125.

    CAS  Google Scholar 

  54. Krchnak, V., Vagner, J., Safar, P., and Lebl, M. (1988) Noninvasive continuous monitoring of solid phase peptide synthesis by acid-base indicator. Collect. Czech. Chem. Commun. 53, 2542–2548.

    Article  CAS  Google Scholar 

  55. Krchnak, V. and Padera, V. (1998) The domino blocks: A simple solution for parallel solid-phase organic synthesis. Bioorg. Med. Chem. Lett. 8, 3261–3264.

    Article  PubMed  CAS  Google Scholar 

  56. Mjalli, A. M. M. and Toyonaga, B. E. (1995) Solid support combinatorial chem istry in lead discovery and SAR optimization; http://www.netsci.org/Science/ Combichem/feature03.html. Net. Sci. 1.

    Google Scholar 

  57. Lebl, M., Pokorny, V., and Krchnak, V. (2000) Apparatus and method for combinatorial chemistry synthesis. Trega Biosciences, Inc. San Diego, CA. US Patent 6,045,755. Lebl, M. and Krchnak, V. (2004) J. Comb. Chem. (in press).

    Google Scholar 

  58. Merrifield, R. B., Stewart, J. M., and Jernberg, N. (1966) Instrument for auto mated synthesis of peptides. Anal. Chem. 38, 1905–1914.

    Article  PubMed  CAS  Google Scholar 

  59. Merrifield, R. B. and Stewart, J. M. (1965) Automated peptide synthesis. Nature 207, 522–523.

    Article  PubMed  CAS  Google Scholar 

  60. Brunfeldt, K. (1973) Automation in solid phase peptide synthesis. In Peptides 1972, Proc.12.EPS (Hanson, H. and Jakubke, H. D., eds.), North-Holland Pub lishing Company, Amsterdam, pp. 141–151.

    Google Scholar 

  61. Birr, C. (1978) Automatization of the Merrifield peptide synthesis. In Aspects of the Merrifield Peptide Synthesis (Birr, C., ed.), Springer-Verlag, Berlin; New York, pp. 72–80.

    Chapter  Google Scholar 

  62. Edelstein, M. S., McNair, D. S., and Sparrow, J. T. (1981) The conversion of solid phase peptide synthesizers to computer control. In Peptides: Synthesis, Struc ture, Function (Rich, D. H. and Gross, E., eds.), Pierce Chemical Company, Rockford, IL, pp. 217–220.

    Google Scholar 

  63. Jonczyk, A. and Meienhofer, J. (1983) Automated flow reactor synthesizer for fast synthesis of peptides using Fmoc protection. In Peptides: Structure and Func tion, Proc.8.APS (Hruby, V. J. and Rich, D. H., eds.), Pierce Chemical Company, Rockford, IL, pp. 73–77.

    Google Scholar 

  64. Blaha, I., Zaoral, M., Krchnak, V., Jehnicka, J., Stepanek, J., and Kalousek, J. (1986) Automatic device for solid-phase peptide synthesis. Chem. Listy 80, 994.

    CAS  Google Scholar 

  65. Cameron, L. R., Holder, J. L., Meldal, M., and Sheppard, R. C. (1988) Peptide synthesis. Part 13. Feedback control in solid phase synthesis. Use of fluorenylmethoxycarbonyl amino acid 3,4-dihydro-4-oxo-1,2,3-benzotriazin-3-yl esters in a fully automated system. J. Chem. Soc. Perkin Trans. 1, 2895–2901.

    Article  Google Scholar 

  66. Geiser, T., Beilan, H., Bergot, B. J., and Otteson, K. M. (1988) Automation of solid-phase peptide synthesis. In Macromolecular Sequencing and Synthesis: Selected Methods and Applications (Schlesinger, D. H., ed.), Alan R. Liss, New York, pp. 199–218.

    Google Scholar 

  67. Newton, R., Fox, J. E., and Mizrahi, A. (1988) Automation of peptide synthesis. Synt. Peptide. Biotechnol. 1–24.

    Google Scholar 

  68. Bridgham, J., Geiser, T. G., Hunkapiller, M. W., et al. (1989). Automated polypeptide synthesis process. Applied Biosystems, Inc. Foster City, CA. US Patent 4,816,513.

    Google Scholar 

  69. Kearney, T. and Giles, J. (1989) Fmoc peptide synthesis with a continuous flow synthesizer. Amer. Biotechnol. Lab. 7, 34–44.

    CAS  Google Scholar 

  70. Schnorrenberg, G. and Gerhardt, H. (1989) Fully automatic simultaneous mul tiple peptide synthesis in micromolar scale: Rapid synthesis of series of peptides for screening in biological assays. Tetrahedron 45, 7759–7764.

    Article  CAS  Google Scholar 

  71. Gausepohl, H., Kraft, M., Boulin, C., and Frank, R. W. (1990) A robotic worksta tion for automated multiple peptide synthesis. In Innovations and Perspectives in Solid Phase Synthesis (Epton, R., ed.), SPCC, Birmingham, UK, pp. 487–490.

    Google Scholar 

  72. Judd, A. K. (1991) Multiple polymer synthesizer. SRI International, Menlo Park, CA. US Patent 5,053,454.

    Google Scholar 

  73. Schnorrenberg, G., Wiesmuller, K. H., Beck-Sickinger, A. G., Drechsel, H., and Jung, G. (1991) Rapid fully automatic SMPS for epitope mapping of influenza nucleoprotein. In Peptides 90, Proc.21.EPS (Giralt, E. and Andreu, D., eds.), ESCOM, Leiden, pp. 202–203.

    Google Scholar 

  74. Fox, J. E. (1992) Automatic multiple peptide synthesis. Biochem. Soc. Trans. 20, 851–853.

    PubMed  CAS  Google Scholar 

  75. Gausepohl, H., Boulin, C., Kraft, M., and Frank, R. W. (1992) Automated mul tiple peptide synthesis. Peptide Res. 5, 315–320.

    CAS  Google Scholar 

  76. Lebl, M., Stierandova, A., Eichler, J., et al. (1992) An automated multiple solid phase peptide synthesizer utilizing cotton as a carrier. In Innovation and Per spectives in Solid Phase Peptide Synthesis (Epton, R., ed.), Intercept Limited, Andover, UK, pp. 251–257.

    Google Scholar 

  77. Nokihara, K., Yamamoto, R., Hazama, M., Wakizawa, O., and Nakamura, S. (1992) Design and applications of a novel simultaneous multiple solid phase pep tide synthesizer. In Innovation and Perspectives in Solid Phase Peptide Synthe sis (Epton, R., ed.), Intercept Limited, Andover, UK, pp. 445–448.

    Google Scholar 

  78. Zuckermann, R. N., Siani, M.A., and Banville, S. C. (1992) Control of the zymate robot with an external computer: Construction of a multiple peptide synthesizer. Lab. Robotics Automation 4, 183–192.

    CAS  Google Scholar 

  79. Bridgham, J., Geiser, T., Hunkapiller, M. W., et al. (1993). Automated polypeptide synthesis apparatus. Applied Biosystems, Inc. Foster City, CA. US Patent 5,186,898.

    Google Scholar 

  80. Neimark, J. and Briand, J. P. (1993) Development of a fully automated multi channel peptide synthesizer with integrated TFA cleavage capability. Peptide Res. 6, 219–228.

    CAS  Google Scholar 

  81. Saneii, H. H., Shannon, J. D., Miceli, R. M., Fischer, H. D., and Smith, C. W. (1994) Fully automated selection and synthesis of peptide libraries. In Peptides: Chemistry, Structure and Biology, Proc.13.APS (Hodges, R. S. and Smith, J. A., eds.), ESCOM, Leiden, pp. 1018–1020.

    Google Scholar 

  82. Saneii, H. H. and Shannon, J. D. (1994) Fully automated solid phase synthesis of combinatorial libraries on the peptide librarian. In Innovation and Perspectives in Solid Phase Synthesis (Epton, R., ed.), Intercept, Andover, UK, pp. 335–338.

    Google Scholar 

  83. Chang, H. W. and Slavazza, D. M. (1995) Solid phase peptide synthesizer. US Patent 5,453,487.

    Google Scholar 

  84. Nokihara, K., Hazama, M., Yamamoto, R., and Nakamura, S. (1995) Simulta neous multiple chemical synthesizer. Shimadzu Corporation, Kyoto Japan. US Patent 5,395,594.

    Google Scholar 

  85. Boutin, J. A. and Fauchere, J. L. (1996) Second-generation robotic synthesizer for peptide, pseudopeptide and non-peptide libraries. In Proceedings of the Inter national Symposium on Laboratory Automation and Robotics 1995 (Little, J. N., ONeil, C., and Strimaitis, J. R., eds.), Zymark Corp., Hopkinton, MA, pp. 197–210.

    Google Scholar 

  86. Krchnak, V., Cabel, D., and Lebl, M. (1996) MARS: Multiple automated robotic synthesizer for continuous flow of peptides. Peptide Res. 9, 45–49.

    Google Scholar 

  87. Daniels, S. B., Hantman, S. F., Sole, N. A., Gibney, B. R., Rabanal, F., and Kates, S. A. (1998) Pioneer(TM): A continuous-flow peptide synthesis system. In Peptides 1996: Proceedings of the Twenty-Fourth European Peptide Symposium (Ramage, R. and Epton, R., eds.), Mayflower Scientific Ltd., Kingswinford, UK, pp. 323–324.

    Google Scholar 

  88. Carpino, L. A. and Han, G. Y. (1970) The 9-fluorenylmethoxycarbonyl function, a new base-sensitive aminoprotecting group. J. Amer. Chem. Soc. 92,5748–5749.

    Article  CAS  Google Scholar 

  89. Atherton, E. and Sheppard, R. C. (1989) Solid Phase Peptide Synthesis: A Practical Approach, IRL Press at Oxford University Press, Oxford; New York, pp. 1–203.

    Google Scholar 

  90. Dryland, A. and Sheppard, R. C. (1986) Peptide synthesis. Part 8. A system for solid-phase synthesis under low pressure continuous flow conditions. J. Chem. Soc. Perkin Trans. 1, 125–137.

    Article  Google Scholar 

  91. Cargill, J. F. and Lebl, M. (1997) New methods in combinatorial chemistry: Robotics and parallel synthesis. Curr. Opin. Chem. Biol. 1, 67–71.

    Article  PubMed  CAS  Google Scholar 

  92. Gooding, O., Hoeprich, P. D. Jr., Labadie, J. W., Porco, J. A. Jr., van Eikeren, P., and Wright, P. (1996) Boosting the productivity of medicinal chemistry through automation tools: Novel technological developments enable a wide range of auto mated synthetic procedures. In Molecular Diversity and Combinatorial Chemis try. Libraries and Drug Discovery (Chaiken, I. M. and Janda, K. D., eds.), American Chemical Society, Washington, DC, pp. 199–206.

    Google Scholar 

  93. Zinsser, W. (2000) SOPHAS-A real high throughput synthesizer. In Innovation and Perspectives in Solid Phase Synthesis (Epton, R., ed.), Mayflower World wide, Kingswinford, UK, pp. 61–66.

    Google Scholar 

  94. Zinsser, W. (2002) Workbench automation in synthesis: From preparation to final substance. In Innovation and Perspectives in Solid Phase Synthesis (Epton, R., ed.), Mayflower Worldwide, Kingswinford, UK, pp. 67–78.

    Google Scholar 

  95. Bartak, Z., Bolf, J., Kalousek, J., et al. (1994) Design and construction of the auto matic peptide library synthesizer. Methods: A Companion to Methods in Enzymology 6, 432–437.

    Article  CAS  Google Scholar 

  96. Boutin, J. A., Hennig, P., Lambert, P. H., et al. (1996) Combinatorial peptide libraries: Robotic synthesis and analysis by nuclear magnetic resonance, mass spectrometry, tandem mass spectrometry, and high-performance capillary elec trophoresis techniques. Anal. Biochem. 234, 126–141.

    Article  PubMed  CAS  Google Scholar 

  97. Zuckermann, R. N., Kerr, J. M., Siani, M. A., and Banville, S. C. (1992) Design, construction and application of a fully automated equimolar peptide mixture syn thesizer. Int. J. Peptide Prot. Res. 40, 497–506.

    Article  CAS  Google Scholar 

  98. Zuckermann, R. N. and Banville, S. C. (1992) Automated peptide-resin deprotec tion/cleavage by a robotic workstation. Peptide Res. 5, 169–174.

    CAS  Google Scholar 

  99. Lebl, M., Pokorny, V., and Krchnak, V. (2000) Apparatus and method for com binatorial chemistry synthesis. Trega Biosciences, Inc. San Diego, CA. US Patent 6,045,755.

    Google Scholar 

  100. Lebl, M. and Krchnak, V. (1999) Techniques for massively parallel synthesis of small organic molecules. In Innovation and Perspectives in Solid Phase Synthe sis & Combinatorial Libraries (Epton, R., ed.), Mayflower Scientific Limited, Birmingham, UK, pp. 43–46.

    Google Scholar 

  101. Lebl, M. (2003) Centrifugation based automated synthesis technologies. J. Assoc. Lab. Autom. 8, 30–36.

    Article  Google Scholar 

  102. Pokorny, V., Mudra, P., Jehnicka, J., et al. (1994) Compas 242. New type of mul tiple peptide synthesizer utilizing cotton and tea bag technology. In Innovation and Perspectives in Solid Phase Synthesis (Epton, R., ed.), Mayflower World wide Limited, Birmingham, UK, pp. 643–648.

    Google Scholar 

  103. Bolf, J., Eichler, J., Jehnicka, J., et al. (1993) Multiple synthesis of peptide(s) on solid carrier. Ceskoslovenska Akademie Ved, UOCHB Prague CR. CS US Patent 5,202,418; 5,338,831; 5,342,585.

    Google Scholar 

  104. Lebl, M. (2000) Method for separation of liquid and solid phases for solid phase organic syntheses. Trega Biosciences, Inc. San Diego, CA. US Patent 6,121,054.

    Google Scholar 

  105. Lebl, M. (1999) New technique for high-throughput synthesis. Bioorg. Med. Chem. Lett. 9, 1305–1310.

    Article  PubMed  CAS  Google Scholar 

  106. Studer, A. and Curran, D. P. (1997) A strategic alternative to solid phase synthe sis: Preparation of a small isoxazoline library by “fluorous synthesis.” Tetra hedron 53, 6681–6696.

    Article  CAS  Google Scholar 

  107. Lebl, M., Burger, C., Ellman, B., et al. (2001) Fully automated parallel oligonucleotide synthesizer. Collect. Czech. Chem. Commun. 66, 1299–1314.

    Article  CAS  Google Scholar 

  108. Adler, F., Turk, G., Frank, R., et al. (2000) A new array format for the automated parallel combinatorial synthesis by the SPOT-technique. In Innovation and Per spectives in Solid Phase Synthesis (Epton, R., ed.), Mayflower Worldwide, Kingswinford, UK, pp. 221–222.

    Google Scholar 

  109. Fodor, S. P. A., Leighton, R. J., Pirrung, M. C., Stryer, L., Lu, A. T., and Solas, D. (1991) Light-directed, spatially addressable parallel chemical synthesis. Science 251, 767–773.

    Article  PubMed  CAS  Google Scholar 

  110. Singh-Gasson, S., Green, R. D., Yue, Y., et al. (1999) Maskless fabrication of light-directed oligonucleotide microarrays using a digital micromirror array. Nat. Biotech. 17, 974–978.

    Article  CAS  Google Scholar 

  111. Pellois, J. P., Wang, W., and Gao, X. (2000) Peptide synthesis based on t-Boc chemistry and solution photogenerated acids. J. Comb. Chem. 2, 355–360.

    Article  PubMed  CAS  Google Scholar 

  112. Kuroda, N., Hattori, T., Fujioka, Y., Cork, D. G., Kitada, C., and Sugawara, T. (2001) Application of automated synthesis suite to parallel solution-phase pep tide synthesis. Chem. Pharm. Bull. Tokyo 49, 1147–1154.

    Article  PubMed  CAS  Google Scholar 

  113. Sugawara, T., Kobayashi, K., Okamoto, S., Kitada, S., and Fujino, M. (1995) Application of unique automated synthesis system for solution-phase peptide synthesis. Chem. Pharm. Bull. Tokyo 43, 1272–1280.

    Article  PubMed  CAS  Google Scholar 

  114. Kuroda, N., Hattori, T., Kitada, C., and Sugawara, T. (2001) Solution-phase auto mated synthesis of tripeptide derivatives. Chem. Pharm. Bull. Tokyo 49, 1138–1146.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Lebl, M., Hachmann, J. (2005). High-Throughput Peptide Synthesis. In: Howl, J. (eds) Peptide Synthesis and Applications. Methods in Molecular Biology™, vol 298. Humana Press. https://doi.org/10.1385/1-59259-877-3:167

Download citation

  • DOI: https://doi.org/10.1385/1-59259-877-3:167

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-317-6

  • Online ISBN: 978-1-59259-877-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics