Skip to main content

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 109))

Abstract

Reprogramming T-cell populations by T-cell receptor (TCR) gene transfer is a new therapeutic tool for adoptive tumor immunotherapy. Gene transfer of human leukocyte antigen (HLA)-transgenic mice-derived TCR into human T-cells allows the circumvention of tolerance to tumor-associated (self) antigens (TAA). This chapter reports on the identification of the α and β chains of the heterodimeric TCR derived from a mouse T-cell clone. The related DNA fragments are inserted into a retroviral vector for heterologous expression of the TAA-specific TCR in human T-cells. Polymerase chain reaction (PCR)-based cloning protocols are provided for the tailor-made customization of murine TCR. We describe the humanization and chimerization of such TCR as well as their expression in human T-cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yu, Z. and Restifo, N. P. (2002) Cancer vaccines: progress reveals new complexities. J. Clin. Invest. 110(3), 289–294.

    PubMed  CAS  Google Scholar 

  2. Kessels, H. W., Wolkers, M. C., and Schumacher, T. N. (2002) Adoptive transfer of T-cell immunity. Trends Immunol. 23(5), 264–269.

    Article  PubMed  CAS  Google Scholar 

  3. Bankovich, A. J. and Garcia, K. C. (2003) Not just any T cell receptor will do. Immunity 18(1), 7–11.

    Article  PubMed  CAS  Google Scholar 

  4. Kane, L. P., Lin, J., and Weiss, A. (2000) Signal transduction by the TCR for antigen. Curr. Opin. Immunol. 12(3), 242–249.

    Article  PubMed  CAS  Google Scholar 

  5. Theobald, M., Biggs, J., Hernandez, J., Lustgarten, J., Labadie, C., Sherman, L. A. (1997) Tolerance to p53 by A2.1-restricted cytotoxic T lymphocytes. J. Exp. Med. 185(5), 833–841.

    Article  PubMed  CAS  Google Scholar 

  6. Kuball, J., Schuler, M., Antunes, FE., et al. (2002) Generating p53-specific cytotoxic T lymphocytes by recombinant adenoviral vector-based vaccination in mice, but not man. Gene Ther. 9(13), 833–843.

    Article  PubMed  CAS  Google Scholar 

  7. Stanislawski, T., Voss, R. H., Lotz, C., et al. (2001) Circumventing tolerance to a human MDM2-derived tumor antigen by TCR gene transfer. Nat. Immunol. 2(10), 962–970.

    Article  PubMed  CAS  Google Scholar 

  8. Kessels, H. W., Wolkers, M. C., van den Boom, M. D., van der Valk, M. A., and Schumacher, T. N. (2001) Immunotherapy through TCR gene transfer. Nat. Immunol. 2(10), 957–961.

    Article  PubMed  CAS  Google Scholar 

  9. Holler, P. D. and Kranz, D. M. (2003) Quantitative analysis of the contribution of TCR/ pepMHC affinity and CD8 to T cell activation. Immunity 18(2), 255–264.

    Article  PubMed  CAS  Google Scholar 

  10. Lanzavecchia, A., Lezzi, G., and Viola, A. (1999) From TCR engagement to T cell activation: a kinetic view of T cell behavior. Cell 96(1), 1–4.

    Article  PubMed  CAS  Google Scholar 

  11. Rosenberg, S. A. (1999) A new era for cancer immunotherapy based on the genes that encode cancer antigens. Immunity 10(3), 281–287.

    Article  PubMed  CAS  Google Scholar 

  12. Holler, P. D., Holman, P. O., Shusta, E. V., O’Herrin, S., Wittrup, K. D., and Kranz, D. M. (2000) In vitro evolution of a T cell receptor with high affinity for peptide/MHC. Proc. Natl. Acad. Sci. USA 97(10), 5387–5392.

    Article  PubMed  CAS  Google Scholar 

  13. Kessels, H. W., van den Boom, M. D., Spits, H., Hooijberg, E., and Schumacher, T. N. (2000) Changing T cell specificity by retroviral T cell receptor display. Proc. Natl. Acad. Sci. USA 97(26), 14,578–14,583.

    Article  PubMed  CAS  Google Scholar 

  14. Stauss, H. J. (1999) Immunotherapy with CTLs restricted by nonself MHC. Immunol. Today 20(4), 180–183.

    Article  PubMed  CAS  Google Scholar 

  15. Theobald, M., Biggs, J., Dittmer, D., Levine, A. J., and Sherman, L. A. (1995) Targeting p53 as a general tumor antigen. Proc. Natl. Acad. Sci. USA 92(26), 11,993–11,997.

    Article  PubMed  CAS  Google Scholar 

  16. Sherman, L. A., Hesse, S. V., Irwin, M. J., La Face, D., and Peterson, P. (1992) Selecting T cell receptors with high affinity for self-MHC by decreasing the contribution of CD8. Science 258(5083), 815–818.

    Article  PubMed  CAS  Google Scholar 

  17. Katayama, C. D., Eidelman, F. J., Duncan, A., Hooshmand, F., and Hedrick, S. M. (1995) Predicted complementarity determining regions of the T cell antigen receptor determine antigen specificity. EM BO J. 14(5), 927–938.

    CAS  Google Scholar 

  18. Breedveld, F. C. (2000) Therapeutic monoclonal antibodies. Lancet 355(9205), 735–740.

    Article  PubMed  CAS  Google Scholar 

  19. Eshhar, Z. (1997) Tumor-specific T-bodies: towards clinical application. Cancer Immunol. Immunother. 45(3-4), 131–136.

    Article  PubMed  CAS  Google Scholar 

  20. Labrecque, N., Whitfield, L. S., Obst, R., Waltzinger, C., Benoist, C., and Mathis, D. (2001) How much TCR does a T cell need? Immunity 15(1), 71–82.

    Article  PubMed  CAS  Google Scholar 

  21. Carson, G. R., Kuestner, R. E., Ahmed, A., Pettey, C. L., and Concino, M. F. (1991) Six chains of the human T cell antigen receptor.CD3 complex are necessary and sufficient for processing the receptor heterodimer to the cell surface. J Biol Chem. 266(12), 7883–7887.

    PubMed  CAS  Google Scholar 

  22. Gouaillard, C., Huchenq-Champagne, A., Arnaud, J., Chen, C. L., and Rubin, B. (2001) Evolution of T cell receptor (TCR) alpha beta heterodimer assembly with the CD3 complex. EurJ. Immunol. 31(12), 3798–3805.

    Article  PubMed  CAS  Google Scholar 

  23. Li, Z. G., Wu, W. P., and Manolios, N. (1996) Structural mutations in the constant region of the T-cell antigen receptor (TCR)beta chain and their effect on TCR alpha and beta chain interaction. Immunology 88(4), 524–530.

    PubMed  CAS  Google Scholar 

  24. Saito, T., Sussman, J. L., Ashwell, J. D., and Germain, R. N. (1989) Marked differences in the efficiency of expression of distinct alpha beta T cell receptor heterodimers. J. Immunol. 143(10), 3379–3384.

    PubMed  CAS  Google Scholar 

  25. Uematsu, Y. (1992) Preferential association of alpha and beta chains of the T cell antigen receptor. Eur J. Immunol. 22(2), 603–606.

    Article  PubMed  CAS  Google Scholar 

  26. Burns, R. P., Jr., Natarajan, K., LoCascio, N. J., et al. (1998) Molecular analysis of skewed Tcra-V gene use in T-cell receptor beta-chain transgenic mice. Immunogenetics 47(2), 107–114.

    Article  PubMed  CAS  Google Scholar 

  27. Vacchio, M. S., Granger, L., Kanagawa, O., et al. (1993) T cell receptor V alpha-V beta combinatorial selection in the expressed T cell repertoire. J. Immunol. 151(3), 1322–1327.

    PubMed  CAS  Google Scholar 

  28. Casrouge, A., Beaudoing, E., Dalle, S., Pannetier, C., Kanellopoulos, J., and Kourilsky, P. (2000) Size estimate of the alpha beta TCR repertoire of naive mouse splenocytes. J. Immunol. 164(11), 5782–5787.

    PubMed  CAS  Google Scholar 

  29. Whitlow, M., Bell, B. A., Feng, S. L., et al. (1993) An improved linker for single-chain Fv with reduced aggregation and enhanced proteolytic stability. Protein Eng. 6(8), 989–995.

    Article  PubMed  CAS  Google Scholar 

  30. Robinson, C. R. and Sauer, R. T. (1998) Optimizing the stability of single-chain proteins by linker length and composition mutagenesis. Proc. Natl. Acad. Sci. USA 95(11), 5929–5934.

    Article  Google Scholar 

  31. Chung, S., Wucherpfennig, K. W., Friedman, S. M., Hafler, D. A., and Strominger, J. L. (1994) Functional three-domain single-chain T-cell receptors. Proc. Natl. Acad. Sci. USA 91(26), 12,654–12,658.

    Article  PubMed  CAS  Google Scholar 

  32. Willemsen, R. A., Weijtens, M. E., Ronteltap, C., et al. (2000) Grafting primary human T lymphocytes with cancer-specific chimeric single chain and two chain TCR. Gene Ther. 7(16), 1369–1377.

    Article  PubMed  CAS  Google Scholar 

  33. Fitzer-Attas, C. J., Schindler, D. G., Waks, T., and Eshhar, Z. (1998) Harnessing Syk family tyrosine kinases as signaling domains for chimeric single chain of the variable domain receptors: optimal design for T cell activation. J. Immunol. 160(1), 145–154.

    PubMed  CAS  Google Scholar 

  34. Johansson, B., Palmer, E., and Bolliger, L. (1999) The extracellular domain of the zetachain is essential for TCR function. J. Immunol. 162(2), 878–885.

    Google Scholar 

  35. Bolliger, L. and Johansson, B. (1999) Identification and functional characterization of the zeta-chain dimerization motif for TCR surface expression. J. Immunol. 163(7), 3867–3876.

    PubMed  CAS  Google Scholar 

  36. Atwell, S., Ridgway, J. B., Wells, J. A., and Carter, P. (1997) Stable heterodimers from remodeling the domain interface of a homodimer using a phage display library. J. Mol. Biol. 270(1), 26–35.

    Article  Google Scholar 

  37. Garcia, K. C., Degano, M., Pease, L. R., et al. (1998) Structural basis of plasticity in T cell receptor recognition of a self peptide-MHC antigen. Science 279(5354), 1166–1172.

    Article  Google Scholar 

  38. Backstrom, B. T., Milia, E., Peter, A., Jaureguiberry, B., Baldari, C. T., and Palmer, E. (1996) A motif within the T cell receptor alpha chain constant region connecting peptide domain controls antigen responsiveness. Immunity 5(5), 437–447.

    Article  PubMed  CAS  Google Scholar 

  39. Rudd, P. M., Elliott, T., Cresswell, P., Wilson, I. A., and Dwek, R. A. (2001) Glycosylation and the immune system. Science 291(5512), 2370–2376.

    Article  PubMed  CAS  Google Scholar 

  40. Germain, R. N. (2002) T-cell development and the CD4-CD8 lineage decision. Nat. Rev. Immunol. 2(5), 309–322.

    Article  PubMed  CAS  Google Scholar 

  41. Naeher, D., Luescher, I. F., and Palmer, E. (2002) A role for the alpha-chain connecting peptide motif in mediating TCR-CD8 cooperation. J. Immunol. 169(6), 2964–2970.

    Google Scholar 

  42. Sette, A., Vitiello, A., Reherman, B., et al. (1994) The relationship between class I binding affinity and immunogenicity of potential cytotoxic T cell epitopes. J. Immunol. 153(12), 5586–5592.

    Google Scholar 

  43. Irwin, M. J., Heath, W. R., and Sherman, L. A. (1989) Species-restricted interactions between CD8 and the alpha 3 domain of class I influence the magnitude of the xenogeneic response. J. Exp. Med. 170(4), 1091–1101.

    Article  PubMed  CAS  Google Scholar 

  44. Gascoigne, N. R., Chien, Y., Becker, D. M., Kavaler, J., and Davis, M. M. (1984) Genomic organization and sequence of T-cell receptor beta-chain constant-and joining-region genes. Nature 310(5976), 387–391.

    Article  Google Scholar 

  45. Lefranc, M. P., Giudicelli, V., Ginestoux, C., et al. (1999) IMGT, the international Immuno Gene Tics database. Nucleic Acids Res. 27(1), 209–212.

    Article  PubMed  CAS  Google Scholar 

  46. Ruiz, M., Giudicelli, V., Ginestoux, C., et al. (2000) IMGT, the international Immuno GeneTics database. Nucleic Acids Res. 28(1), 219–221.

    Article  PubMed  CAS  Google Scholar 

  47. Lefranc, M. P. (2001) IMGT, the international ImmunoGeneTics database. Nucleic Acids Res. 29(1), 207–209.

    Article  Google Scholar 

  48. Lefranc, M. P. (2003) IMGT, the international ImmunoGeneTics database. Nucleic Acids Res. 31(1), 307–310.

    Article  Google Scholar 

  49. Niederberger, N., Holmberg, K., Alam, S. M., et al. (2003) Allelic exclusion of the TCR alpha-chain is an active process requiring TCR-mediated signaling and c-Cbl. J. Immunol. 170(9), 4557–4563.

    PubMed  CAS  Google Scholar 

  50. Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular Cloning. A Laboratory Manual, 2nd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  51. Weijtens, M. E., Hart, E. H., and Bolhuis, R. L. (2000) Functional balance between T cell chimeric receptor density and tumor associated antigen density: CTL mediated cytolysis and lymphokine production. Gene Ther. 7(1), 35–42.

    Article  PubMed  CAS  Google Scholar 

  52. Weijtens, M. E., Willemsen, R. A., Hart, E. H., and Bolhuis, R. L. (1998) A retroviral vector system “STITCH” in combination with an optimized single chain antibody chimeric receptor gene structure allows efficient gene transduction and expression in human T lymphocytes. Gene Ther. 5(9), 1195–1203.

    Article  PubMed  CAS  Google Scholar 

  53. Tuan, R. S. (1997) Recombinant Gene Expression Protocols. 1st Ed. Human Press Inc., Totowa, NJ.

    Book  Google Scholar 

  54. Call, M. E., Pyrdol, J., Wiedmann, M., and Wucherpfennig, K. W. (2002) The organizing principle in the formation of the T cell receptor-CD3 complex. Cell 111(7), 967–979.

    Article  PubMed  CAS  Google Scholar 

  55. Rudd, P. M., Wormald, M. R., Stanfield, R. L., et al. (1999) Roles for glycosylation of cell surface receptors involved in cellular immune recognition. J. Mol. Biol. 293(2), 351–366.

    Article  PubMed  CAS  Google Scholar 

  56. Arden, B., Clark, S. P., Kabelitz, D., and Mak, T. W. (1995) Mouse T-cell receptor variable gene segment families. Immunogenetics 42(6), 501–530.

    PubMed  CAS  Google Scholar 

  57. Gurtu, V., Yan, G., and Zhang, G. (1996) IRES bicistronic expression vectors for efficient creation of stable mammalian cell lines. Biochem. Biophys. Res. Commun. 229(1), 295–298.

    Article  PubMed  CAS  Google Scholar 

  58. Mizuguchi, H., Xu, Z., Ishii-Watabe, A., Uchida, E., and Hayakawa, T. (2000) IRES dependent second gene expression is significantly lower than cap-dependent first gene expression in a bicistronic vector. Mol. Ther. 1(4), 376–382.

    Article  PubMed  CAS  Google Scholar 

  59. Jackson, M. R., Nilsson, T., and Peterson, P. A. (1990) Identification of a consensus motif for retention of transmembrane proteins in the endoplasmic reticulum. EMBO J. 9(10), 3153–3162.

    Google Scholar 

  60. Bunnell, B. A., Muul, L. M., Donahue, R. E., Blaese, R. M., and Morgan, R. A. (1995) High-efficiency retroviral-mediated gene transfer into human and nonhuman primate pe-ripheral blood lymphocytes. Proc. Natl. Acad. Sci. USA 92(17), 7739–7743.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc.

About this protocol

Cite this protocol

Voss, RH., Kuball, J., Theobald, M. (2005). Designing TCR for Cancer Immunotherapy. In: Ludewig, B., Hoffmann, M.W. (eds) Adoptive Immunotherapy: Methods and Protocols. Methods in Molecular Medicine™, vol 109. Humana Press. https://doi.org/10.1385/1-59259-862-5:229

Download citation

  • DOI: https://doi.org/10.1385/1-59259-862-5:229

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-406-7

  • Online ISBN: 978-1-59259-862-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics