Skip to main content

Transgenic Plants: An Historical Perspective

  • Protocol
Transgenic Plants: Methods and Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 286))

Summary

The development of technologies that allow the introduction and functional expression of foreign genes in plant cells has extended in less than two decades to the production of transgenic plants with improved insect and disease resistance, seeds and fruits with enhanced nutritional qualities, and plants that are better adapted to adverse environmental conditions. Vaccines against serious human diseases and other important products have also been developed using transgenic plants. Many more agronomic and quality traits are currently being engineered in both academic and industrial laboratories, which are limited only by our poor knowledge of plant gene function. The emergence of new functional genomic strategies for the identification and characterization of genes promises to provide a wealth of information with an enormous potential to enhance traditional plant breeding and to genetically engineer plants for specific purposes. This chapter describes some of the highlights in the development of these technologies and some of the major achievements in production and commercialization of transgenic crops. We also discuss some of the biosafety issues related to release of this novel class of plants into the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Binns, A. and Campbell, A. (2001) Agrobacterium tumefaciens-mediated transformation of plant cells, in Encyclopedia of Life Sciences. Nature Publishing Group, London, UK, pp. 1–6.

    Google Scholar 

  2. Chilton, M. D. (2001) Agrobacterium. A memoir. Plant Physiol. 125, 9–14.

    CAS  PubMed  Google Scholar 

  3. Zaenen, I., Van Larebeke, N., Teuchy, H., Van Montagu, M., and Schell, J. (1974) Supercoiled circular DNA in crown-gall inducing Agrobacterium strains. J. Mol. Biol. 86, 109–127.

    CAS  PubMed  Google Scholar 

  4. Chilton, M. D., Drummond, M. H., Merlo, D. J., et al. (1977) Stable incorporation of plasmid DNA into higher plant cells: the molecular basis of crown gall tumorigenesis. Cell 11, 263–271.

    CAS  PubMed  Google Scholar 

  5. Herrera-Estrella, L., Depicker, A., Van Montagu, M., and Schell, J. (1983) Expression of chimaeric genes transferred into plant cells using a Ti-plasmid-derived vector. Nature 303, 209–213.

    CAS  Google Scholar 

  6. Herrera-Estrella, L., De Block, M., Messens, E., Hernalsteens, H. P., Van Montagu, M., and Schell, J. (1983) Chimeric genes as dominant selectable markers in plant cells. EMBO J. 2, 987–995.

    CAS  PubMed  Google Scholar 

  7. De Block, M., Herrera-Estrella, L., Van Montagu, M., Schell, J., and Zambryski, P. (1984) Expression of foreign genes in regenerated plants and their progeny. EMBO J. 3, 1681–1689.

    PubMed  Google Scholar 

  8. Bundock, P., den Dulk-Ras, A., Beijersbergen, A., and Hooykaas, P. (1995) Trans-kingdom T-DNA transfer from Agrobacterium tumefaciens to Saccharomyces cerevisiae. EMBO J. 14, 3206–3214.

    CAS  PubMed  Google Scholar 

  9. Gutiérrez-Mora, A., Santacruz-Ruvalcaba, F., Cabrera-Ponce, J. L., and Rodríguez-Garay, B. (2003) Mejoramiento gen/tico vegetal in vitro. E-Gnosis Vol1: Art 4. (online) Website: (http://www.e-gnosis.udg.mx/vol1/art4).

  10. Crouzet, P. and Hohn, B. (2002) Transgenic plants. Encyclopedia of Life Sciences. Nature Publishing Group, London, UK, pp. 1–7.

    Google Scholar 

  11. Hamilton, C. M., Frary, A., Lewis C., and Tanksley, S. D. (1996) Stable transfer of intact high molecular weight DNA into plant chromosomes. Proc. Natl. Acad. Sci. USA 93, 997–1001.

    Google Scholar 

  12. Trieu, A. T., Burleigh, S. H., Kardailsky, I. V., et al. (2000) Transformation of Medicago truncatula via infiltration of seedlings or flowering plants with Agrobacterium. Plant J. 22, 531–541.

    CAS  PubMed  Google Scholar 

  13. Sanford, J. C. (1988) The biolistic process. Trends Biotechnol. 6, 299–302.

    CAS  Google Scholar 

  14. Hansen, G. and Wright M. S. (1999) Recent advances in the transformation of plants. Trends Plant Sci. 4, 226–231.

    PubMed  Google Scholar 

  15. Kohli, A., Leech, M., Vain, P., Laurie, D. A., and Christou, P. (1998) Transgene organization in rice engineered through direct DNA transfer supports a two phase integration mechanism mediated by the establishment of integration hot spots. Proc. Natl. Acad. Sci. USA 95, 7203–7208.

    CAS  PubMed  Google Scholar 

  16. Fromm, M. E., Taylor, L. P., and Walbot, V. (1986) Stable transformation of maize after gene transfer by electroporation. Nature 319, 791–793.

    CAS  PubMed  Google Scholar 

  17. Wilmink, A. and Dons, J. J. M. (1993) Selective agents and marker genes for use in transformation of monocotyledonous plants. Plant Mol. Biol. Rep. 11, 165–185.

    CAS  Google Scholar 

  18. Haseloff, J., Siemering, K. R., Prasher, D. C., and Hodge, S. (1997) Removal of a cryptic intron and subcellular localization of green fluorescent protein are required to mark transgenic Arabidopsis plants brightly. Proc. Natl. Acad. Sci. USA 94, 2122–2127.

    CAS  PubMed  Google Scholar 

  19. Meinke, D. W., Cherry, M., Dean, C., Rounsley, S. D., and Koornneef, M. (1998) Arabidopsis thaliana: a model plant for genome analysis. Science 282, 662–682.

    CAS  PubMed  Google Scholar 

  20. Gidoni, D., Fuss, E., Burbidge, A., et al. (2003) Multi-functional T-DNA/Ds tomato lines designed for gene cloning and molecular and physical dissection of the tomato genome. Plant Mol. Biol. 51, 8–98.

    Google Scholar 

  21. Jeon, J. S., Lee, S., Jung, K. H., et al. (2000) T-DNA insertional mutagenesis for functional genomics in rice. Plant J. 22, 561–570.

    CAS  PubMed  Google Scholar 

  22. Smith, C. J., Watson, C. F., Morris, P. C., et al. (1990) Inheritance and effect on ripening of antisense polygalacturonase genes in transgenic tomatoes. Plant Mol. Biol. 14, 369–379.

    CAS  PubMed  Google Scholar 

  23. Brummell, D. A. and Harpster, M. H. (2001) Cell wall metabolism in fruit softening and quality and its manipulation in transgenic plants. Plant Mol. Biol. 47, 311–340.

    CAS  PubMed  Google Scholar 

  24. Briggs, S. P. and Koziel, M. (1998) Engineering new plant strains for commercial markets. Curr. Opin. Biotechnol. 9, 233–235.

    CAS  PubMed  Google Scholar 

  25. Herrera-Estrella, L. (2000) Genetically modified crops and developing countries. Plant Physiol. 124, 923–925.

    CAS  PubMed  Google Scholar 

  26. Altenbach, S. B., Pearson, K. W., Meeker, G., Staraci L. C., and Sun, S. S. M. (1989). Enhancement of the methionine content of seed proteins by the expression of a chimeric gene encoding methionine-rich protein in transgenic plants. Plant Mol. Biol. 13, 513–522.

    CAS  PubMed  Google Scholar 

  27. Altenbach, S. B., Kuo, C. C., Staraci, L. C., et al. (1992) Accumulation of a Brazil nut albumin in seeds of transgenic canola results in enhanced levels of seed protein methionine. Plant Mol. Biol. 18, 235–245.

    CAS  PubMed  Google Scholar 

  28. Molving, L., Tabe, L. M., Eggum, B. O., et al. (1997) Enhanced methionine levels and increased nutritive value of seeds of transgenic lupinus (Lupinus angustifolius L.) expressing a sunflower seed albumin gene. Proc. Natl. Acad. Sci. USA 94, 8393–8398.

    Google Scholar 

  29. Keeler, S. J., Maloney, C. L., Webber, P. Y., et al. (1997) Expression of the novo high-lysine alpha-helical coiled-coil proteins may significantly increase the accumulated levels of lysine in mature seeds of transgenic tobacco plants. Plant Mol. Biol. 34, 15–29.

    CAS  PubMed  Google Scholar 

  30. Falco, S. C., Guida, T., Locke, M., et al. (1995) Transgenic canola and soybean seeds with increased lysine. BioTechnology 13, 577–582.

    CAS  PubMed  Google Scholar 

  31. Chakraborty, S., Chakraborty, N., and Datta, A. (2000) Increased nutritive value of transgenic potato by expressing a nonallergenic seed albumin gene from Amaranthus hypochondriacus. Proc. Nat. Acad. Sci. USA 97, 3724–3729.

    CAS  PubMed  Google Scholar 

  32. Ye, X., Al-Babili, S., Klöi, A., et al. (2000) Engineering the provitamin A (β-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287, 303–305.

    CAS  PubMed  Google Scholar 

  33. Thelen, J. J. and Ohlrogge, J. B. (2002) Metabolic engineering of fatty acid biosynthesis in plants. Metab. Eng. 4, 12–21.

    CAS  PubMed  Google Scholar 

  34. Fraser, P. D., Romer, S., Shipton, C. A., et al. (2002) Evaluation of transgenic tomato plants expressing an additional phytoene synthase in a fruit-specific manner. Proc. Natl. Acad. Sci. USA 99, 1092–1097.

    CAS  PubMed  Google Scholar 

  35. Ogita, S., Uefuji, H., Yamaguchi, Y., Koizumi, N., and Sano, H. (2003) Producing decaffeinated coffee plants. Nature 423, 823–824.

    CAS  PubMed  Google Scholar 

  36. Estruch, J. J., Carozzi, N. B., Desai, N., Duck, N.B., Warren, G.W., and Koziel, M. (1997) Transgenic plants: an emerging approach to pest control. Nat. Biotech. 15, 137–141.

    CAS  Google Scholar 

  37. Peferoen, M. (1997) Progress and prospects for field use of Bt genes in crops. Trends Biotechnol. 15, 173–177.

    CAS  Google Scholar 

  38. Schuler, T. H., Poppy, G. M., Kerry, B. R., and Delhom, I. (1998) Insect-resistant transgenic plants. Trends Biotechnol. 16, 168–175.

    CAS  Google Scholar 

  39. Vaeck, M., Reynaerts, A., Höfte, H., et al. (1987) Transgenic plants protected from insect attack. Nature 382, 33–37.

    Google Scholar 

  40. Fischhoff, D. A., Bowdish, K. S., Perlack, F. J., et al. (1987) Insect tolerant transgenic tomato plants. BioTechnology 5, 807–813.

    CAS  Google Scholar 

  41. Perlack, F. J., Deaton, R. W., Armstrong, T. A., et al. (1990) Insect resistant cotton plants. BioTechnology 8, 939–943.

    Google Scholar 

  42. Perlack F. J., Stone, T. B., Muskopf, Y. M., et al. (1993) Genetically improved potatoes: protection from damage by Colorado potato beetles. Plant Mol. Biol. 22, 313–321.

    Google Scholar 

  43. Koziel, M. G., Beland, G. L., Bowman, C., et al. (1993) Field performance of elite transgenic maize plants expressing an insecticidal protein derived from Bacillus thuringiensis. BioTechnology 11, 194–200.

    CAS  Google Scholar 

  44. Stewart, C. N., Adang, M. J., All, J. N., Ramachandran, S., and Parrot, W. A. (1996) Insect control and dosage effect in transgenic canola containing a synthetic Bacillus thuringiensis cryAc gene. Plant Physiol. 112, 115–120.

    CAS  Google Scholar 

  45. Stewart, C. N., Adang, M. J., All, J. N., Ramachandran, S., and Parrot, W. A. (1996) Genetic transformation, recovery and characterization of fertile soybean transgenic for a synthetic Bacillus thuringiensis cryIAc gene. Plant Physiol. 112, 121–129.

    CAS  PubMed  Google Scholar 

  46. Wün, J., Klöti, A., Burkhardt, P. K., et al. (1996) Transgenic Indica rice breeding line IR58 expressing a synthetic cryIA(b) gene from Bacillus thuringiensis provides effective insect pest control. BioTechnology 14, 171–176.

    Google Scholar 

  47. Ostlie, K. (2001) Crafting crop resistance to corn rootworms. Nat. Biotech. 19, 624–625.

    CAS  Google Scholar 

  48. Tu, J., Zhang, G., Datta, K., et al. (2000) Field performance of transgenic elite commercial hybrid rice expressing Bacillus thuringiensis δ-endotoxin. Nat. Biotech. 18, 1101–1104.

    CAS  Google Scholar 

  49. Vázquez-Padrón, R. I. (2000) Insect-resistant tropical plants and new assessment about Cry proteins, in Plant Genetic Engineering: Towards the Third Millennium (Arencibia, A. D., ed.) Elsevier Science, Amsterdam, The Netherlands.

    Google Scholar 

  50. Lilley, C. J., Devlin, P., Urwin, P. E., and Atkinson, H. J. (1999) Parasitic nematodes, proteinases and transgenic plants. Parasitol. Today 15, 414–417.

    CAS  PubMed  Google Scholar 

  51. Kramer, K. J., Morgan, T. D., Throne, J. E., Dowell, F. E., Bailey, M., and Howard, J. A. (2000) Transgenic avidin maize is resistant to storage insect pests. Nat. Biotech. 18, 670–674.

    CAS  Google Scholar 

  52. Burgess, E. P., Malone, L. A., Christeller, J. T., et al. (2002) Avidin expressed in transgenic tobacco leaves confers resistance to two noctuid pests, Helicoverpa armigera and Spodoptera litura. Transgen. Res. 2, 199–214.

    Google Scholar 

  53. Powell, A. P., Nelson, R. S., Barun, D., et al. (1986) Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science 232, 738–743.

    Google Scholar 

  54. Shah, D. M., Rommens, C. M., and Beachy, R. N. (1995) Resistance to diseases and insects in transgenic plants: progress and applications to agriculture. Trends Biotechnol. 13, 362–368.

    CAS  Google Scholar 

  55. Tennant, P. F., Gonsalves, C., Ling, K. S., et al. (1994) Differential protection against papaya ringspot virus isolates in coat protein gene transgenic papaya and classically cross-protected papaya. Phytopathology 84, 1359–1366.

    Google Scholar 

  56. Gonsalves, D., Ferreira, S., Manshart, R., Fitch, M., and Slightom, J. (2000) Transgenic virus resistant papaya: new hope for controlling papaya ringspot virus in Hawaii. Annu. Rev. Phytopathol. 36, 415–437.

    Google Scholar 

  57. Fitchen, J. H. and Beachy, R. N. (1993) Genetically engineered protection against viruses in transgenic plants. Annu. Rev. Microbiol. 47, 739–763.

    CAS  PubMed  Google Scholar 

  58. Wang, H. Z., Zhao, P. J., Xu, J. C., Zhao, H., and Zhang, H. S. (2003) Virus resistance in transgenic watermelon plants containing a WMV-2 coat protein gene. Yi Chuan Xue Bao. 30, 70–75.

    CAS  PubMed  Google Scholar 

  59. Lomonossoff, G.P. (1995) Pathogen-derived resistance to plant viruses. Annu. Rev. Phytopathol. 33, 323–343.

    CAS  PubMed  Google Scholar 

  60. Gutiérrez-Campos, R., Torres-Acosta, J. A., Saucedo-Arias, L. J., and Gómez-Lim, M. A. (1999) The use of cysteine proteinase inhibitors to engineer resistance against potyviruses in transgenic tobacco plants. Nat. Biotech. 17, 1223–1226.

    Google Scholar 

  61. Zhang, L., Xu, J., and Birch, R. (1999) Engineered detoxification confers resistance against a pathogenic bacterium. Nat. Biotech. 17, 1021–1024

    CAS  Google Scholar 

  62. De la Fuente, J. M., Mosqueda-Cano, G., Alvarez-Morales, A., and Herrera-Estrella, L. (1992) Expression of a bacterial phaseolotoxin-resistant ornithyl transcarbamylase in transgenic tobacco confers resistance to Pseudomonas syringae pv. phaseolicola. BioTechnology 10, 905–909.

    Google Scholar 

  63. Song, W. Y., Wang, G., Chen, L., et al. (1995) A receptor kinase-like protein encoded by the rice disease resistant gene Xa21. Science 270, 1804–1806.

    CAS  PubMed  Google Scholar 

  64. Zhang, S., Song, W. Y., Chen, L., et al. (1998) Transgenic elite Indica rice varieties resistant to Xanthomonas oryzae pv. Oryzae. Mol. Breeding 4, 551–558.

    CAS  Google Scholar 

  65. Tang, K., Sun, X., Hu, Q., et al. (2001) Transgenic rice plants expressing the ferredoxin-like protein (AP1) from sweet pepper show enhanced resistance to Xanthomonas oryzae pv. oryzae. Plant Sci. 160, 1035–1042.

    CAS  Google Scholar 

  66. Hausler, R. E., Rademacher, T., Li, J., et al. (2001) Single and double overexpression of C(4)-cycle genes had differential effects on the pattern of endogenous enzymes, attenuation of photorespiration and on contents of UV protectants in transgenic potato and tobacco plants. J. Exp. Bot. 52, 1785–1803.

    CAS  PubMed  Google Scholar 

  67. Ku, M. S., Cho, D., Li, X., et al. (2001) Introduction of genes encoding C4 photosynthesis enzymes into rice plants: physiological consequences. Rice Biotechnol. 236, 100–116.

    CAS  Google Scholar 

  68. Worrell, A. C., Bruneau, J. M., Summerfelt, K., Boersig, M., and Voelker, T. A. (1991) Expression of a maize sucrose phosphate synthase in tomato alters leaf carbohydrate partitioning. Plant Cell 10, 1121–1130

    Google Scholar 

  69. Galtier, N., Foyer, C.H., Huber, J., Voelker, T.A., and Huber, S.C. (1993) Effects of elevated sucrose-phosphate synthase activity on photosynthesis, assimilate partitioning, and growth in tomato (Lycopersicon esculentum var UC82B). Plant Physiol. 101, 535–543.

    CAS  PubMed  Google Scholar 

  70. Holmberg, N. and Bülow, L. (1998) Improving stress tolerance in plants by gene transfer. Trends Plant Sci. 3, 61–66.

    Google Scholar 

  71. Lillus, G. and Bülow, L. (1996) Enhanced NaCl stress tolerance in transgenic tobacco expressing bacterial choline dehydrogenase. BioTechnology 14, 177–180.

    Google Scholar 

  72. Hayashi, H., Alia, Mustardy, L., Deshnium, P., Ida, M., and Murata, N. (1997) Transformation of Arabidopsis thaliana with the codA gene for choline oxidase; accumulation of glycinebetaine and enhanced tolerance to salt and cold stress. Plant J. 12, 133–142.

    CAS  PubMed  Google Scholar 

  73. Alia, Hayashi H. and Murata, N. (1998) Enhancement of the tolerance of Arabidopsis to high temperatures by genetic engineering of the synthesis of glycinebetaine. Plant J. 16, 155–162.

    CAS  PubMed  Google Scholar 

  74. Holström, K. O., Mäntylä, E., Wellin, B., et al. (1996) Drought tolerance in tobacco. Nature 379, 683–684.

    Google Scholar 

  75. Garg, A. K., Kim, J. K., Owens, T. G., et al. (2002) Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc. Natl. Acad. Sci. USA 99, 15,898–15,903.

    CAS  PubMed  Google Scholar 

  76. Thomas, J. C., Sepahi, M., Arendall, B., and Bonhert, H. J. (1995) Enhancement of seed germination in high salinity by engineering mannitol expression in Arabidopsis thaliana. Plant Cell Environ. 18, 801–806.

    CAS  Google Scholar 

  77. Abebe T., Guenzi, A.C., Martin, B., and Cushman J.C. (2003) Tolerance of mannitol-accumulating transgenic wheat to water stress and salinity. Plant Physiol. 131, 1748–1755.

    CAS  PubMed  Google Scholar 

  78. Apse, M. P., Aarón, G. S., Snedden, W. S., and Blumwald, E. (1999) Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science 285, 1256–1258.

    CAS  PubMed  Google Scholar 

  79. Zhang, H. X. and Blumwald, E. (2001) Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nat. Biotech. 19, 765–768.

    CAS  Google Scholar 

  80. Ohta, M., Hayashi, Y., Nakashima, A., et al. (2002) Introduction of a Na+/H+ antiporter gene from Atriplex gmelini confers salt tolerance to rice. FEBS Lett. 532, 279–282.

    CAS  PubMed  Google Scholar 

  81. Kasuga, M., Liu, Q., Miura, S., Yamaguchi-Shinozaki, K., and Shinokazi, K. (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat. Biotech. 17, 287–291.

    CAS  Google Scholar 

  82. Jaglo, K. R., Kleff, S., Amundsen, K. L., et al. (2001) Components of the Arabidopsis C-Repeat/Dehydration-responsive element binding factor cold-response pathway are conserved in Brassica napus and other plant species. Plant Physiol. 127, 910–917.

    CAS  PubMed  Google Scholar 

  83. Hsieh, T. H., Lee, J. T., Charng, Y. Y., and Chan, M. T. (2002) Tomato plants ectopically expressing Arabidopsis CBF1 show enhanced resistance to water deficit stress. Plant Physiol. 130, 618–626.

    CAS  PubMed  Google Scholar 

  84. Herrera-Estrella, L. (1999) Transgenic plants for tropical regions: Some considerations about their development and their transfer to the small farmer. Proc. Natl. Acad. Sci. USA 96, 5978–5981.

    CAS  PubMed  Google Scholar 

  85. Lee, J. A. (1998). The calcicole-calcifuge problem revisited. Adv. Bot. Res. 29, 2–30.

    Google Scholar 

  86. Bar-Yosef, B. (1991) The hidden half, in Plant Roots (Waisel, Y., Eschel A., and Kafkati, V., eds.) Marcel Dekker, New York, NY, pp. 529–557.

    Google Scholar 

  87. López-Bucio, J., Guevara-García, A., Ramírez-Rodríguez, V., Nieto, M. F., De la Fuente, J. M., and Herrera-Estrella, L. (2000) Agriculture for marginal lands: plants toward the third millennium, in Plant Genetic Engineering: Towards the Third Millenium, (Arencibia A. D., ed.), Elsevier Science, Amsterdam, The Netherlands, pp. 159–170.

    Google Scholar 

  88. Tyler, G. and Ström, L. (1995) Differing organic acid exudation patterns explain calcifuge and acidifuge behavior of plants. Ann. Bot. 75, 75–78.

    CAS  PubMed  Google Scholar 

  89. De la Fuente, J.M., Ramírez-Rodríguez, B., Cabrera-Ponce, J.L., and Herrera-Estrella L. (1997) Aluminum tolerance in transgenic plants by alteration of citrate synthesis. Science 276, 1566–1568.

    PubMed  Google Scholar 

  90. Löpez-Bucio, J., Martínez-De la Vega, O., Guevara-García, A., and Herrera-Estrella, L. (2000) Enhanced phosphorous uptake in transgenic tobacco plants that overproduce citrate. Nat. Biotech. 18, 450–453.

    Google Scholar 

  91. Koyama, H., Takita, E., Kawamura, A., Hara, T., and Shibata, D. (1999) Over expression of mitochondrial citrate synthase gene improves the growth of carrot cells in Al-phosphate medium. Plant Cell Physiol. 40, 482–488.

    CAS  PubMed  Google Scholar 

  92. Chaney, R. L., Malik, M., Li, Y. M., et al. (1997) Phytoremediation of soil metals. Curr. Opin. Biotechnol. 8, 279–284.

    CAS  PubMed  Google Scholar 

  93. Rugh, C. L., Wilde, H. D., Stack, N. M., Thompson, D. M., Summers, A. O., and Meagher, R. B. (1996) Mercuric ion reduction and resistance in transgenic Arabidopsis thaliana plants expressing a modified bacterial merA gene. Proc. Natl. Acad. Sci. USA 93, 3182–3187.

    CAS  PubMed  Google Scholar 

  94. Gisbert, C., Ros, R., De Haro, A., et al. (2003) A plant genetically modified that accumulates Pb is especially promising for phytoremediation. Biochem. Biophys. Res. Commun. 303, 440–445.

    CAS  PubMed  Google Scholar 

  95. Bennett, L. E., Burkhead, J. L., Hale, K. L., Terry, N., Pilon, M., and Pilon-Smits, E. A. (2003) Analysis of transgenic Indian mustard plants for phytoremediation of metal-contaminated mine tailings. J. Environ. Qual. 32, 432–440.

    CAS  PubMed  Google Scholar 

  96. Larrick, J. W. and Thomas, D. W. (2001) Producing proteins in transgenic plants and animals. Curr. Opin. Biotechnol. 12, 411–418.

    CAS  PubMed  Google Scholar 

  97. Goddjin, O. J. M. and Pen, J. (1995) Plants as bioreactors. Trends Biotechnol. 13, 379–387.

    Google Scholar 

  98. Woodard, S. L., Mayor, J. M., Bailey, M. R., et al. (2003) Maize-derived bovine trypsin: characterization of the first large-scale, commercial product from transgenic plants. Biotechnol. Appl. Biochem. 38, 123–130.

    CAS  PubMed  Google Scholar 

  99. Giddings, G., Allison, G., Brooks, D., and Carter, A. (2000) Transgenic plants as factories for biopharmaceuticals. Nat. Biotech. 18, 1151–1155.

    CAS  Google Scholar 

  100. Boothe, J. G., Parmenter, D. L., and Saponja, J. A. (1997) Molecular farming in plants: oilseeds as vehicles for the production of pharmaceutical proteins. Drug Develop. Res. 42, 172–181.

    CAS  Google Scholar 

  101. Staub, J. M., García, B., Graves, J., et al. (2000) High-yield production of a human therapeutic protein in tobacco chloroplasts. Nat. Biotech. 18, 333–338.

    CAS  Google Scholar 

  102. Ma, J., Hiatt, A., Hein, M., et al. (1995) Generation and assembly of secretory antibodies in plants. Science 268, 716–719.

    CAS  PubMed  Google Scholar 

  103. Daniell, H., Streatfield, S. J., and Wycoff, K. (2001) Medical molecular farming: production of antibodies, biopharmaceuticals and edible vaccines in plants. Trends Plant Sci. 6, 219–226.

    CAS  PubMed  Google Scholar 

  104. Lamphear, B. J., Streatfield, S. J., Jilka, J. M., et al. (2002) Delivery of subunit vaccines in maize seed. J. Control Rel. 85, 169–180.

    CAS  Google Scholar 

  105. Mason, H. S., Lam, D. M., and Arntzen, C. J. (1992) Expression of hepatitis B surface antigen in transgenic plants. Proc. Natl. Acad. Sci. USA 89, 11,745–11,749.

    CAS  PubMed  Google Scholar 

  106. Ehsani, P., Khabiri, A., and Domansky, N. N. (1997) Polypeptides of hepatitis B surface antigen in transgenic plants. Gene 190, 107–111.

    CAS  PubMed  Google Scholar 

  107. Kong, Q., Richter, L., Yang, Y. F., Arntzen, C. J., Mason, H. S., and Thanavala, Y. (2001) Oral immunization with hepatitis B surface antigen expressed in transgenic plants. Proc. Natl. Acad. Sci. USA 98, 11,539–11,544.

    CAS  PubMed  Google Scholar 

  108. Hein, M. B., Yeo, T. C., Wang, F., and Sturtevant, A. (1995) Expression of colera toxin subunits in plants. Ann. NY Acad. Sci. 792, 50–56.

    Google Scholar 

  109. Arakawa, T., Chong, D. K. X., Merrit, J. L., and Landgridge, W. H. R. (1997) Expression of colera toxin B subunit oligomers in transgenic potato plants. Transgen. Res. 6, 403–413.

    CAS  Google Scholar 

  110. Arakawa, T., Chong, D. K. X., and Langridge, W. H. R. (1998) Efficacy of a food plant-based oral cholera toxin B subunit vaccine. Nat. Biotech. 16, 292–297.

    CAS  Google Scholar 

  111. McGarvey, P. B., Hammond, J., Dienelt, M. M., et al. (1995) Expression of the rabies virus glycoprotein in transgenic tomatoes. BioTechnology 13, 1484–1487.

    CAS  PubMed  Google Scholar 

  112. Haq, T. A., Mason, H. S., Clements, J. D., and Arntzen, C. J. (1995) Oral immunization with a recombinant bacterial antigen produced in transgenic plants. Science 268, 714–715.

    CAS  PubMed  Google Scholar 

  113. Mason, H. S., Haq, T. A., and Clements, J. D. (1998) Edible vaccine protects mice against Escherichia coli heat-labile enterotoxin (LT): potatoes expressing a synthetic LT-B gene. Vaccine 16, 1336–1343.

    CAS  PubMed  Google Scholar 

  114. Mason, H. S., Warzecha, H., Mor, T., and Arntzen C. J. (2002) Edible plant vaccines: applications for prophylactic and therapeutic molecular medicine. Trends Mol. Med. 8, 324–229.

    CAS  PubMed  Google Scholar 

  115. Walmsley, A. M. and Arntzen C. J. (2003) Plant cell factories and mucosal vaccines. Curr. Opin. Biotechnol. 14, 145–150.

    CAS  PubMed  Google Scholar 

  116. Poirier, Y., Nawrath, C., and Somerville, C. (1995) Production of polyhydroxyalkanoates, a family of biodegradable plastics and elastomers, in bacteria and plants. BioTechnology 13, 142–150.

    CAS  PubMed  Google Scholar 

  117. Nawrath, C., Poirier, Y., and Somerville, C. (1994) Targeting of the polyhydroxybutyrate biosynthetic pathway to the plastids of Arabidopsis thaliana results in high levels of polymer accumulation. Proc. Natl. Acad. Sci. USA 91, 12,760–12,764.

    CAS  PubMed  Google Scholar 

  118. Maliyakal, E. J. and Keller, G. (1996) Metabolic pathway engineering in cotton: Biosynthesis of polyhydroxybutyrate in fiber cells. Proc. Natl. Acad. Sci. USA 93, 12,768–12,773.

    Google Scholar 

  119. Comai, L., Facciotti, D., Hiatt, W. R., Thompson, G., Rose, R. E., and Stalker, D. M. (1985) Expression in plants of a mutant aroA gene from Salmonella typhimurium confers tolerance to glyphosate. Nature 317, 741–745.

    CAS  Google Scholar 

  120. Fillatti, J. J., Kiser, J., Rose, R., and Comai, L. (1987) Efficient transfer of a glyphosate tolerance gene into tomato using a binary Agrobacterium tumefaciens vector. BioTechnology 5, 726–730.

    CAS  Google Scholar 

  121. Shah, D. M., Horsch, R. B., Klee, H. J., et al. (1986) Engineering herbicide tolerance in transgenic plants. Science 233, 478–481.

    CAS  PubMed  Google Scholar 

  122. Padgette, S. R., Taylor, N. B., Nida, D. L., et al. (1996) The composition of glyphosate-tolerant soybean seeds is equivalent to that of conventional soybeans. J. Nutr. 126, 702–716.

    CAS  PubMed  Google Scholar 

  123. De Block, M., Botterman, J., Vandewiele, M., et al. (1987) Engineering herbicide resistance in plants by expression of a detoxifying enzyme. EMBO J. 6, 2513–2518.

    CAS  PubMed  Google Scholar 

  124. Melchiorre, M. N., Lascano, H. R., and Trippi, V. S. (2002) Transgenic wheat plants resistant to herbicide BASTA obtained by microprojectile bombardment. Biocell 26, 217–223.

    CAS  PubMed  Google Scholar 

  125. Senior, I. J., Moyes, C., and Dale, P. J. (2002) Herbicide sensitivity of transgenic multiple herbicide-tolerant oilseed rape. Pest Manag. Sci. 58, 405–412.

    CAS  PubMed  Google Scholar 

  126. Culpepper, A. S. and York, A. C. (1997) Weed management in no-tillage bromoxynil-tolerant cotton (Gossypium hirsutum). Weed Technol. 11, 335–345.

    CAS  Google Scholar 

  127. Lee, H. J., Lee, S. B., Chung, J. S., et al. (2000) Transgenic rice plants expressing a Bacillus subtilis protoporphyrinogen oxidase gene are resistant to diphenyl ether herbicide oxyfluorfen. Plant Cell Physiol. 41, 743–749.

    CAS  PubMed  Google Scholar 

  128. James, C. (2002) Global status of commercialized transgenic crops: 2002. ISAAA Briefs No. 23: Preview, ISAAA Ithaca, NY.

    Google Scholar 

  129. Crawley, M. J., Brown, S. L., Hails, R. S., Kohn, D. D., and Rees, M. (2001) Transgenic crops in natural habits. Nature 409, 682–683.

    CAS  PubMed  Google Scholar 

  130. Losey, J. E., Rayor, L. S., and Carter, M.E. (1999) Transgenic pollen harms monarch larvae. Nature 399, 214.

    CAS  PubMed  Google Scholar 

  131. Shelton, A. M. and Sears, M. K. (2001) The monarch butterfly controversy: scientific interpretations of a phenomenon. Plant J. 27, 483–488.

    CAS  PubMed  Google Scholar 

  132. Gray, A. J. and Raybould, A. F. (1998) Reducing transgene escape routes. Nature 392, 653–654.

    CAS  Google Scholar 

  133. McBride, K. E., Svab, Z., Schaaf, D. J., Hogan, P. S., Stalker, D. M., and Maliga, P. (1995) Amplification of a chimeric Bacillus gene in chloroplasts leads to an extraordinary level of an insecticidal protein in tobacco. BioTechnology 13, 362–365.

    CAS  PubMed  Google Scholar 

  134. Kuiper, H. A., Kleter, G. A., Noteborn, H., and Kok, J. K. (2001) Assessment of the food safety issues related to genetically modified foods. Plant J. 27, 505–528.

    Google Scholar 

  135. The Arabidopsis Genome Initiative. (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796–815.

    Google Scholar 

  136. Yu, J., Hu, S., Wang, J., et al. (2002) A draft sequence of the rice genome Oryza sativa L. ssp. indica). Science 296, 79–92.

    CAS  PubMed  Google Scholar 

  137. Goff, S. A., Ricke, D., Lan, T. H, et al. (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296, 92–100.

    CAS  PubMed  Google Scholar 

  138. Goga, O. and Tilghman, S. M. (2000) Exploring genome space. Nature 405, 820–822.

    Google Scholar 

  139. Lockhart, D. J. and Winzeler, E. (2000) Genomics, gene expression and DNA arrays. Nature 405, 827–836.

    CAS  PubMed  Google Scholar 

  140. Pandey, A. and Mann, M. (2000) Proteomics to study genes and genomes. Nature 405, 837–846.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc.

About this protocol

Cite this protocol

Herrera-Estrella, L., Simpson, J., Martínez-Trujillo, M. (2005). Transgenic Plants: An Historical Perspective. In: Peña, L. (eds) Transgenic Plants: Methods and Protocols. Methods in Molecular Biology™, vol 286. Humana Press. https://doi.org/10.1385/1-59259-827-7:003

Download citation

  • DOI: https://doi.org/10.1385/1-59259-827-7:003

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-263-6

  • Online ISBN: 978-1-59259-827-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics