Skip to main content

Assay for Evaluating Ribonuclease H-Mediated Degradation of RNA-Antisense Oligonucleotide Duplexes

  • Protocol
Oligonucleotide Synthesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 288))

  • 2056 Accesses

Abstract

Ribonucleases H are complex enzymes whose functions are not clearly understood, further compounded by the fact that multiple forms of the enzyme are present in various organisms. They are known to recognize and degrade the ribonucleic acid (RNA) strand of numerous deoxyribonucleic acid (DNA)-RNA duplex substrates, and so may provide a unique mode of therapeutic intervention at the genetic level of virtually any disease. We have therefore set out detailed procedures for conducting routine assays with almost any one of this family of enzymes by a straightforward assay aimed at identifying novel enzyme-activating antisense oligonucleotides (AONs). The procedures described herein should enable easy identification of potent AON molecules, provided that the RNA is appropriately labeled for subsequent visualization following the guidelines set forth in this protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Walder, R. Y. and Walder, J. A. (1978) Role of RNase H in hybrid-arrested translation by antisense oligonucleotides. Proc. Natl. Acad. Sci. USA 75, 5011–5015.

    Article  Google Scholar 

  2. Turchi, J. J., Huang, L., Murante, R. S., Kim, Y., and Bambara, R. A. (1994) Enzymatic completion of mammalian lagging-strand DNA replication. Proc. Natl. Acad. Sci. USA 91, 9803–9807.

    Article  PubMed  CAS  Google Scholar 

  3. Arudchandran, A., Cerritelli, S. M., Narimatsu, S. K., et al. (2000) The absence of ribonuclease H1 or H2 alters the sensitivity of Saccharomyces cerevisiae to hydroxyurea, caffeine and ethyl methanesulphonate: implications for roles of RNases H in DNA replication and repair. Genes Cells 5, 789–802.

    Article  PubMed  CAS  Google Scholar 

  4. Rydberg, B. and Game, J. (2002) Excision of misincorporated ribonucleotides in DNA by RNase H (type 2) and FEN-1 in cell-free extracts. Proc. Natl. Acad. Sci. USA 99, 16,654–16,659.

    Article  PubMed  CAS  Google Scholar 

  5. Moelling, K., Bolognesi, D. P., Bauer, H., Büsen, W., Plassmann, H. W., and Hausen, P. (1971) Association of viral reverse transcriptase with an enzyme degrading the RNA moiety of RNA-DNA hybrids. Nat. New Biol. 234, 240–243.

    Article  CAS  Google Scholar 

  6. Stein, H. and Hausen, P. (1969) Enzyme from calf thymus degrading the RNA moiety of DNA-RNA hybrids: effect on DNA-dependent RNA polymerase. Science 166, 393–395.

    Article  PubMed  CAS  Google Scholar 

  7. Eder, P. S. and Walder, J. A. (1991) Ribonuclease H from K562 human erythroleukemia cells: purification, characterization and substrate specificity. J. Biol. Chem. 266, 6472–6479.

    PubMed  CAS  Google Scholar 

  8. Frank, P., Albert, S., Cazenave, C., and Toulmé, J.-J. (1994) Purification and characterization of human ribonuclease HII. Nucleic Acids Res. 22, 5247–5254.

    Article  PubMed  CAS  Google Scholar 

  9. Frank, P., Braunshofer-Reiter, C., Wintersberger, U., Grimm, R., and Büsen, W. (1998) Cloning of the cDNA encoding the large subunit of human RNase HI, a homologue of the prokaryotic RNase HII. Proc. Natl. Acad. Sci. USA 95, 12,872–12,877.

    Article  PubMed  CAS  Google Scholar 

  10. Frank, P. Braunshofer-Reiter, C., Pöltl, A., and Holzmann, K. (1998) Cloning, subcellular localization and functional expression of human RNase HII. Biol. Chem. 379, 1404–1412.

    Article  Google Scholar 

  11. Johnson, M. S., McClure, M. A., Feng, D. F., Gray, J., and Doolittle, R. F. (1986) Computer analysis of retroviral pol genes: assignment of enzymatic functions to specific sequences and homologies with nonviral enzymes. Proc. Natl. Acad. Sci. USA 83, 7648–7652.

    Article  PubMed  CAS  Google Scholar 

  12. Frank, P., Braunshofer-Reiter, C., and Wintersberger, U. (1998) Yeast RNase H(35) is the counterpart of the mammalian RNase HI, and is evolutionarily related to prokaryotic RNase HII. FEBS Lett. 421, 23–26.

    Article  PubMed  CAS  Google Scholar 

  13. Berkower, L., Leis, J., and Hurwitz, J. (1973) Isolation and characterization of an endonuclease from Escherichia coli specific for ribonucleic acid in ribonucleic acid-deoxyribonucleic acid hybrid structures. J. Biol. Chem. 248, 5914–5921.

    PubMed  CAS  Google Scholar 

  14. Crouch, R. J. and Dirksen, M. L. (1982) Ribonuclease H. In Linn, S. M. and Roberts, R. J. (Eds.), Nucleases. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 211–241.

    Google Scholar 

  15. Minshull, J. and Hunt, T. (1986) The use of single-stranded DNA and RNase H to promote quantitative “hybrid arrest of translation“ of mRNA-DNA hybrids in reticulocyte lysate cell-free translations. Nucleic Acids Res. 14, 6433–6451.

    Article  PubMed  CAS  Google Scholar 

  16. Crooke, S. T. (1999) Molecular mechanism of action of antisense drugs. Biochim. Biophys. Acta 1489, 31–44.

    PubMed  CAS  Google Scholar 

  17. Damha, M. J., Wilds, C. J., Noronha, A., et al. (1998) Hybrids of RNA and arabinonucleic acids (ANA and 2′F-ANA) are substrates of ribonuclease H. J. Am. Chem. Soc. 120, 12,976–12,977.

    Article  CAS  Google Scholar 

  18. Noronha, A. M., Wilds, C. J., Lok, C.-N., Viazovkina, K., Arion, D., Parniak, M. A., and Damha, M. J. (2000) Synthesis and biophysical properties of arabinonucleic acids (ANA): circular dichroic spectra, melting temperatures and ribonuclease H susceptibility of ANA:RNA hybrid duplexes. Biochemistry 39, 7050–7062.

    Article  PubMed  CAS  Google Scholar 

  19. Wilds, C. J. and Damha M. J. (2000) 2′-deoxy-2′-fluoro-β-D-arabinonucleosides and oligonucleotides (2′F-ANA): synthesis and physicochemical studies. Nucleic Acids Res. 28, 3625–3635.

    Article  PubMed  CAS  Google Scholar 

  20. Wang, J., Verbeure, B., Luyten, I., et al. (2000) Cyclohexene nucleic acids (CeNA): serum stable oligonucleotides that activate RNase H and increase duplex stability with complementary RNA. J. Am. Chem. Soc. 122, 8595–8602.

    Article  CAS  Google Scholar 

  21. Trempe, J. F., Wilds, C. J., Denisov, A. Y., Pon, R. T., Damha, M. J., and Gehring, K. (2001) NMR solution structure of an oligonucleotide hairpin with a 2′F-ANA-RNA stem: implications for RNase H specificity toward DNA-RNA hybrid duplexes. J. Am. Chem. Soc. 123, 4896–4903.

    Article  PubMed  CAS  Google Scholar 

  22. Damha, M. J., Noronha, A. M., Wilds, C. J., Trempe, J.-F., Denisov, A., and Gehring, K. (2001) Properties of arabinonucleic acids (ANA & 2′F-ANA): implications for the design of antisense therapeutics that invoke RNase H cleavage of RNA. Nucleosides Nucleotides Nucleic Acids 20, 429–440.

    Article  PubMed  CAS  Google Scholar 

  23. Minasov, G., Teplova, M., Nielsen, P., Wengel, J., and Egli, M. (2000) Structural basis of cleavage by RNase H of hybrids of arabinonucleic acids and RNA. Biochemistry 39, 3525–3532.

    Article  PubMed  CAS  Google Scholar 

  24. Mangos, M. M. and Damha, M. J. (2002) Flexible and frozen sugar-modified nucleic acids—modulation of biological activity through furanose ring dynamics in the antisense strand. Curr. Top. Med. Chem. 2, 1147–1171.

    Article  PubMed  CAS  Google Scholar 

  25. Mangos, M. M., Min, K.-L., Viazovkina, E., et al. (2003) Efficient Rnase H-directed cleavage of RNA promoted by antisense DNA or 2′F-ANA constructs containing acyclic nucleotide inserts. J. Am. Chem. Soc. 125, 651–659.

    Article  Google Scholar 

  26. Roberts, G. C., Dennis, E. A., Meadows, D. H., Cohen, J. S., and Jardetzky, O. (1969) The mechanism of action of ribonuclease. Proc. Natl. Acad. Sci. USA 62, 1151–1153.

    Article  PubMed  CAS  Google Scholar 

  27. Yazbeck, D. R., Min, K.-L., and Damha, M. J. (2002) Molecular requirements for degradation of a modified sense RNA strand by Escherichia coli ribonuclease H. Nucleic Acids Res. 30, 3015–3025.

    Article  PubMed  CAS  Google Scholar 

  28. Blackburn, P. and Moore, S. (1982) The Enzymes. Academic Press, New York.

    Google Scholar 

  29. Blumberg, D. D. (1987) Creating a ribonuclease-free environment. Methods Enzymol. 152, 20–24.

    Article  PubMed  CAS  Google Scholar 

  30. Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual. 2nd ed. Cold Spring Harbor Press, Cold Spring Harbor, NY.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc.

About this protocol

Cite this protocol

Galarneau, A., Min, KL., Mangos, M.M., Damha, M.J. (2005). Assay for Evaluating Ribonuclease H-Mediated Degradation of RNA-Antisense Oligonucleotide Duplexes. In: Herdewijn, P. (eds) Oligonucleotide Synthesis. Methods in Molecular Biology, vol 288. Humana Press. https://doi.org/10.1385/1-59259-823-4:065

Download citation

  • DOI: https://doi.org/10.1385/1-59259-823-4:065

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-233-9

  • Online ISBN: 978-1-59259-823-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics