Skip to main content

NMR Studies of Partially Folded Molten-Globule States

  • Protocol
Protein NMR Techniques

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 278))

Abstract

Nuclear magnetic resonance (NMR) spectroscopy is a powerful technique for the study of the structure, dynamics, and folding of proteins in solution. It is particularly powerful when applied to dynamic or flexible systems, such as partially folded molten-globule states of proteins, which are not usually amenable to X-ray crystallography. This chapter describes NMR methods suitable for the characterization of molten-globule states. These include pulsed-field-gradient NMR techniques for the measurement of the hydrodynamic radius, bulk and site-specific hydrogen-deuterium exchange experiments for the identification of regions of secondary structure, and 15N-edited NMR experiments carried out in increasing concentrations of denaturants, which allow the stability of different regions of the molten globule to be probed. Examples of the application of these methods to the study of the low-pH molten globule of human α-lactalbumin are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arai, M. and Kuwajima, K. (2000) Role of the molten globule state in protein folding. Adv. Protein Chem. 53, 209–282.

    Article  PubMed  CAS  Google Scholar 

  2. Ptitsyn, O. B. (1995) Molten globule and protein folding. Adv. Protein Chem. 47, 83–229.

    Article  PubMed  CAS  Google Scholar 

  3. Ohgushi, M. and Wada, A. (1983) Molten-globule state—a compact form of globular proteins with mobile sidechains. FEBS Lett. 164, 21–24.

    Article  PubMed  CAS  Google Scholar 

  4. Dolgikh, D. A., Abaturov, L. V., Brazhnikov, E. V., Lebedev, I. O., Chirgadze, I. N., and Ptitsyn, O. B. (1983) Acid form of carbonic anhydrase—molten globule with a secondary structure. Dokl. Akad. Nauk., SSSR 272, 1481–1484.

    CAS  Google Scholar 

  5. Arai, M. and Kuwajima, K. (1996) Rapid formation of a molten globule intermediate in refolding of α-lactalbumin. Fold. Des. 1, 275–287.

    Article  PubMed  CAS  Google Scholar 

  6. Forge, V., Wijesinha, R. T., Balbach, J., Brew, K., Robinson, C.V., Redfield, C., et al. (1999) Rapid collapse and slow structural reorganisation during the refolding of bovine α-lactalbumin. J. Mol. Biol. 288, 673–688.

    Article  PubMed  CAS  Google Scholar 

  7. Arai, M., Ito, K., Inobe, T., Nakao, M., Maki, K., Kamagata, K., et al. (2002) Fast compaction of α-lactalbumin during folding studied by stopped-flow X-ray scattering. J. Mol. Biol. 321, 121–132.

    Article  PubMed  CAS  Google Scholar 

  8. Hughson, F. M., Wright, P. E., and Baldwin, R. L. (1990) Structural characterization of a partly folded apomyoglobin intermediate. Science 249, 1544–1548.

    Article  PubMed  CAS  Google Scholar 

  9. Jennings, P. A. and Wright, P. E. (1993) Formation of a molten globule intermediate early in the kinetic folding pathway of apomyoglobin. Science 262, 892–896.

    Article  PubMed  CAS  Google Scholar 

  10. Acharya, K. R., Ren, J. S., Stuart, D. I., Phillips, D. C., and Fenna, R. E. (1991) Crystal structure of human α-lactalbumin at 1.7 Å resolution. J. Mol. Biol. 221, 571–581.

    Article  PubMed  CAS  Google Scholar 

  11. Dolgikh, D. A., Abaturov, L. V., Bolotina, I. A., Brazhnikov, E. V., Bychkova, V. E., Bushuev, V. N., et al. (1985) Compact state of a protein molecule with pronounced small-scale mobility: bovine α-lactalbumin. Eur. Biophys. J. 13, 109–121.

    Article  PubMed  CAS  Google Scholar 

  12. Redfield, C., Schulman, B. A., Milhollen, M. A., Kim, P. S., and Dobson, C. M. (1999) α-lactalbumin forms a compact molten globule in the absence of disulfide bonds. Nat. Struct. Biol. 6, 948–952.

    Article  PubMed  CAS  Google Scholar 

  13. Baum, J., Dobson, C. M., Evans, P. A., and Hanley, C. (1989) Characterization of a partly folded protein by NMR methods: studies on the molten globule state of guinea pig α-lactalbumin. Biochemistry 28, 7–13.

    Article  PubMed  CAS  Google Scholar 

  14. Dolgikh, D. A., Gilmanshin, R. I., Brazhnikov, E. V., Bychkova, V. E., Semisotnov, G. V., Venyaminov, S.Yu., et al. (1981) α-lactalbumin: compact state with fluctuating tertiary structure? FEBS Lett. 136, 311–315.

    Article  PubMed  CAS  Google Scholar 

  15. Wu, L. C., Peng, Z.-Y., and Kim, P. S. (1995) Bipartite structure of the α-lactalbumin molten globule. Nat. Struct. Biol. 2, 281–286.

    Article  PubMed  CAS  Google Scholar 

  16. Wu, L. C. and Kim, P. S. (1998) A specific hydrophobic core in the α-lactalbumin molten globule. J. Mol. Biol. 280, 175–182.

    Article  PubMed  CAS  Google Scholar 

  17. Schulman, B. A., Kim, P. S., Dobson, C. M., and Redfield, C. (1997) A residuespecific NMR view of the non-cooperative unfolding of a molten globule. Nat. Struct. Biol. 4, 630–634.

    Article  PubMed  CAS  Google Scholar 

  18. Semisotnov, G. V., Rodionova, N. A., Razgulyaev, O. J., Uversky, V. N., Gripas, A. F., and Gilmanshin, R. I. (1991) Study of the “molten globule” intermediate state in protein folding by a hydrophobic fluorescent probe. Biopolymers 31, 119–128.

    Article  PubMed  CAS  Google Scholar 

  19. Berne, B. J. and Pecora, R. (1976) Dynamic Light Scattering with Applications to Chemistry, Biology and Physics. Wiley, New York.

    Google Scholar 

  20. Lattman, E. E. (1994) Small-angle X-ray scattering studies of protein-folding. Curr. Opin. Struct. Biol. 4, 87–92.

    Article  CAS  Google Scholar 

  21. Stejskal, E. O. and Tanner, J. E. (1965) Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J. Chem. Phys. 42, 288–292.

    Article  CAS  Google Scholar 

  22. Gibbs, S. J. and Johnson, C. S., Jr. (1991) A PFG NMR experiment for accurate diffusion and flow studies in the presence of eddy currents. J. Magn. Reson. 93, 395–402.

    Google Scholar 

  23. Jones, J. A., Wilkins, D. K., Smith, L. J., and Dobson, C. M. (1997) Characterisation of protein unfolding by NMR diffusion measurements. J. Biomol. NMR 10, 199–203.

    Article  CAS  Google Scholar 

  24. Wilkins, D. K., Grimshaw, S. B., Receveur, V., Dobson, C. M., Jones, J. A., and Smith, L. J. (1999) Hydrodynamic radii of native and denatured proteins measured by pulse field gradient NMR techniques. Biochemistry 38, 16,424–16,431.

    Article  PubMed  CAS  Google Scholar 

  25. Chen, L., Wu, D. H., and Johnson, C. S., Jr. (1995) Determination of the binding isotherm and size of the bovine serum albumin-sodium dodecyl-sulfate complex by diffusion-ordered 2D NMR. J. Phys. Chem. 99, 828–834.

    Article  CAS  Google Scholar 

  26. Englander, S. W. and Kallenbach, N. R. (1984) Hydrogen exchange and structural dynamics of proteins and nucleic acids. Q. Rev. Biophys. 16, 521–655.

    Article  Google Scholar 

  27. Woodward, C. K., Simon, I., and Tuchsen, E. (1982) Hydrogen exchange and the dynamic structure of proteins. Mol. Cell. Biochem. 48, 135–160.

    Article  PubMed  CAS  Google Scholar 

  28. Bai, Y., Milne, J. S., Mayne, L., and Englander, S. W. (1993) Primary structure effects on peptide group hydrogen exchange. Proteins 17, 75–86.

    Article  PubMed  CAS  Google Scholar 

  29. Wijesinha-Bettoni, R., Dobson, C. M., and Redfield, C. (2001) Comparison of the denaturant-induced unfolding of the bovine and human α-lactalbumin molten globules. J. Mol. Biol. 312, 261–273.

    Article  PubMed  CAS  Google Scholar 

  30. Jeng, M.-F., Englander, S. W., Elove, G. A., Wand, A. J., and Roder, H. (1990) Structural description of acid-denatured cytochrome c by hydrogen exchange and 2D NMR. Biochemistry 29, 10,433–10,437.

    Article  PubMed  CAS  Google Scholar 

  31. Schulman, B. A., Redfield, C., Peng, Z.-Y., Dobson, C. M., and Kim, P. S. (1995) Different subdomains are most protected from hydrogen exchange in the molten globule and native states of human α-lactalbumin. J. Mol. Biol. 253, 651–657.

    Article  PubMed  CAS  Google Scholar 

  32. Kay, L. E., Keifer, P., and Saarinen, T. (1992) Pure absorption gradient enhanced heteronuclear single quantum correlation spectroscopy with improved sensitivity. J. Am. Chem. Soc. 114, 10,663–10,665.

    Article  CAS  Google Scholar 

  33. Wang, Y. and Shortle, D. (1995) The equilibrium folding pathway of staphylococcal nuclease: indentification of the most stable chain-chain interactions by NMR and CD spectroscopy. Biochemistry 34, 15,895–15,905.

    Article  PubMed  CAS  Google Scholar 

  34. Wang, Y. and Shortle, D. (1996) A dynamic bundle of four adjacent hydrophobic segments in the denatured state of staphylococcal nuclease. Protein Sci. 5, 1898–1906.

    Article  PubMed  CAS  Google Scholar 

  35. Braun, D., Wider, G., and Wüthrich, K. (1994) Sequence-corrected 15 N “random coil” chemical shifts. J. Am. Chem. Soc. 116, 8466–8469.

    Article  CAS  Google Scholar 

  36. Marion, D., Driscoll, P. C., Kay, L. E., Wingfield, P. T., Bax, A., Gronenborn, A. M., et al. (1989) Overcoming the overlap problem in the assignment of 1H NMR spectra of larger proteins by use of three-dimensional heteronuclear 1H-15N Hartmann-Hahn multiple quantum coherence and nuclear Overhauser multiple quantum coherence spectroscopy: application to interleukin 1 β. Biochemistry 28, 6150–6156.

    Article  PubMed  CAS  Google Scholar 

  37. Fiebig, K. M., Schwalbe, H., Buck, M., Smith, L. J., and Dobson, C. M. (1996) Toward a description of the conformation of denatured states of proteins: comparison of a random coil model with NMR measurements. J. Phys. Chem. 100, 2661–2666.

    Article  CAS  Google Scholar 

  38. Frenkiel, T., Bauer, C., Carr, M. D., Birdsall, B., and Feeney, J. (1990) HMQCNOESY-HMQC: a three-dimensional NMR experiment which allows detection of nuclear Overhauser effects between protons with overlapping signals. J. Magn. Reson. 90, 420–425.

    CAS  Google Scholar 

  39. Wüthrich, K. (1986) NMR of Proteins and Nucleic Acids. Wiley, New York.

    Google Scholar 

  40. Ramboarina, S. and Redfield, C. (2003) Structural characterisation of the human α-lactalbumin molten globule at high temperature. J. Mol. Biol. 330, 1177–1188.

    Article  PubMed  CAS  Google Scholar 

  41. Eliezar, D., Jennings, P. A., Dyson, H. J., and Wright, P. E. (1997) Populating the equilibrium molten globule state of apomyoglobin under suitable conditions for structural characterization by NMR. FEBS Lett. 417, 92–96.

    Article  Google Scholar 

  42. Eliezer, D., Yao, J., Dyson, J. H., and Wright, P. E. (1998) Structural and dynamic characterization of partially folded states of apomyoglobin and implications for protein folding. Nat. Struct. Biol. 5, 148–155.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Redfield, C. (2004). NMR Studies of Partially Folded Molten-Globule States. In: Downing, A.K. (eds) Protein NMR Techniques. Methods in Molecular Biology™, vol 278. Humana Press. https://doi.org/10.1385/1-59259-809-9:233

Download citation

  • DOI: https://doi.org/10.1385/1-59259-809-9:233

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-246-9

  • Online ISBN: 978-1-59259-809-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics