Skip to main content

Measurement of Intermediate Exchange Phenomena

  • Protocol
Protein NMR Techniques

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 278))

Abstract

Understanding the crucial role of protein motions in the function of biological macromolecules requires methods for their characterization. These motions lead to noticeable alterations in the decay of nuclear spin magnetization. Recent advances in solution nuclear magnetic resonance (NMR) make quantitative connections between µs–ms motions and nuclear spin relaxation in proteins. The techniques serve as useful probes of motional kinetics and thermodynamics and their relation to function. Here, we review the two most common experimental methods for characterizing conformational motions in proteins: the relaxation-compensated Carr-Purcell-Meiboom-Gill (rcCPMG) and off-resonance experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rao, B. D. N. (1989) Determination of equilibrium constants for enzyme-bound reactants and products by nuclear magnetic resonance. Methods Enzymol. 177, 358–375.

    Article  PubMed  CAS  Google Scholar 

  2. Burton, R. E., Huang, G. S., Daugherty, M. A., Fullbright, P. W., and Oas, T. G. (1996) Microsecond protein folding through a compact transition state. J. Mol. Biol. 263, 311–322.

    Article  PubMed  CAS  Google Scholar 

  3. Wennerström, H. (1972) NNuclear magnetic relaxation induced by chemical exchange. Mol. Phys. 24, 69–80.

    Article  Google Scholar 

  4. Palmer, A. G., Kroenke, C. D., and Loria, J. P. (2001) Nuclear magnetic resonance methods for quantifying microsecond-to-millisecond motions in biological macromolecules. Methods Enzymol. 339(Part B), 204–238.

    Article  PubMed  CAS  Google Scholar 

  5. Kempf, J. G. and Loria, J. P. (2002) Protein dynamics from solution NMR: theory and applications. Cell Biochem. Biophys. 39, 187–212.

    Article  Google Scholar 

  6. Jen, J. (1978) Chemical exchange and NMR T2 relaxation—the multisite case. J. Magn. Reson. 30, 111–128.

    CAS  Google Scholar 

  7. McConnell, H. M. (1957) Theory of nuclear magnetic shielding in molecules, I: long-range dipolar shielding of protons. J. Chem. Phys. 27, 226–229.

    Article  CAS  Google Scholar 

  8. Allan, E. A., Hogben, M. G., Reeves, L. W., and Shaw, K. N. (1972) Multisite chemical exchange. Pure Appl. Chem. 32, 9–25.

    Article  CAS  Google Scholar 

  9. Allerhand, A. and Thiele, E. (1966) Analysis of Carr-Purcell spin-echo NMR experiments on multiple-spin systems, II: the effect of chemical exchange. J. Chem. Phys. 45, 902–916.

    Article  CAS  Google Scholar 

  10. Forsen, S. and Hoffman, R. A. (1964) Exchange rates by nuclear magnetic multiple resonance, III: Exchange reactions in systems with several nonequivalent sites. J. Chem. Phys. 40, 1189–1196.

    Article  CAS  Google Scholar 

  11. Bain, A. D. and Cramer, J. A. (1993) Optimal NMR measurements for slow exchange in two-site and three-site systems. J. Phys. Chem. 97, 2884–2887.

    Article  CAS  Google Scholar 

  12. McConnell, H. M. (1958) Reaction rates by nuclear magnetic resonance. J. Chem. Phys. 28, 430, 431.

    Article  CAS  Google Scholar 

  13. Woessner, D. E. (1995) Brownian motion and its effects in NMR chemical exchange and relaxation in liquids. Concepts Magn. Reson. 8, 397–421.

    Article  Google Scholar 

  14. Ishima, R. and Torchia, D. A. (1999) Estimating the time scale of chemical exchange of proteins from measurements of transverse relaxation rates in solution. J. Biomol. NMR 14, 369–372.

    Article  PubMed  CAS  Google Scholar 

  15. Carr, H. Y. and Purcell, E. M. (1954) Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys. Rev. 94, 630–638.

    Article  CAS  Google Scholar 

  16. Meiboom, S. and Gill, D. (1958) Modified spin-echo method for measuring nuclear spin relaxation times. Rev. Sci. Instrum. 29, 688–691.

    Article  CAS  Google Scholar 

  17. Luz, Z. and Meiboom, S. (1963) Nuclear magnetic resonance study of the protolysis of trimethylammonium ion in aqueous solution-order of the reaction with respect to solvent. J. Chem. Phys. 39, 366–370.

    Article  CAS  Google Scholar 

  18. Orekhov, V. Y., Pervushin, K. V., and Arseniev, A. S. (1994) Backbone dynamics of (1–71) bacteriorhodopsin studied by two-dimensional 1H-15N NMR spectroscopy. Eur. J. Biochem. 219, 887–896.

    Article  PubMed  CAS  Google Scholar 

  19. Loria, J. P., Rance, M., and Palmer, A. G. (1999) A relaxation-compensated Carr-Purcell-Meiboom-Gill sequence for characterizing chemical exchange by NMR spectroscopy. J. Am. Chem. Soc. 121, 2331, 2332.

    Article  CAS  Google Scholar 

  20. Millet, O. M., Loria, J. P., Kroenke, C. D., Pons, M., and Palmer, A. G. (2000) The static magnetic field dependence of chemical exchange linebroadening defines the NMR chemical shift time scale. J. Am. Chem. Soc. 122, 2867–2877.

    Article  CAS  Google Scholar 

  21. Wang, L., Pang, Y., Holder, T., Brender, J. R., Kurochkin, A. V., and Zuiderweg, E. R. (2001) Functional dynamics in the active site of the ribonuclease binase. Prog. Natl. Acad. Sci. USA 98, 7684–7689.

    Article  CAS  Google Scholar 

  22. Carver, J. P. and Richards, R. E. (1972) A general two-site solution for the chemical exchange produced dependence of T2 upon the Carr-Purcell pulse separation. J. Magn. Reson. 6, 89–105.

    CAS  Google Scholar 

  23. Davis, D. G., Perlman, M. E., and London, R. E. (1994) Direct measurements of the dissociation-rate constant for inhibitor-enzyme complexes via the and T2 (CPMG) methods. J. Magn. Reson., Ser B 104, 266–275.

    Article  CAS  Google Scholar 

  24. Piette, L. H. and Anderson, W. A. (1959) Potential energy barrier determinations for some alkyl nitrites by nuclear magnetic resonance. J. Chem. Phys. 30, 899–908.

    Article  CAS  Google Scholar 

  25. Trott, O. and Palmer, A. G., III. (2002) R1rho relaxation outside of the fast-exchange limit. J. Magn. Reson. 154, 157–160.

    Article  PubMed  CAS  Google Scholar 

  26. Deverell, C., Morgan, R. E., and Strange, J. H. (1970) Studies of chemical exchange by nuclear magnetization relaxation in the rotating frame. Mol. Phys. 18, 553–559.

    Article  CAS  Google Scholar 

  27. Meiboom, S. (1961) Nuclear magnetic resonance study of the proton transfer in water. J. Chem. Phys. 34, 375–388.

    Article  CAS  Google Scholar 

  28. Mulder, F. A. A., de Graaf, R. A., Kaptein, R., and Boelens, R. (1998) An off-resonance rotating frame relaxation experiment for the investigation of macromolecular dynamics using adiabatic rotations. J. Magn. Reson. 131, 351–357.

    Article  PubMed  CAS  Google Scholar 

  29. Akke, M., Liu, J., Cavanagh, J., Erickson, H. P., and Palmer, A. G. (1998) Pervasive conformational fluctuations on microsecond time scales in a fibronectin type III domain. Nat. Struct. Biol. 5, 55–59.

    Article  PubMed  CAS  Google Scholar 

  30. Vugmeyster, L., Kroenke, C. D., Picart, F., Palmer, A. G., and Raleigh, D. P. (2000) 15Nρ measurements allow the determination of ultrafast protein folding rates. J. Am. Chem. Soc. 122, 5387, 5388.

    Article  CAS  Google Scholar 

  31. Eisenmesser, E. Z., Bosco, D. A., Akke, M., and Kern, D. (2002) Enzyme dynamics during catalysis. Science 295, 1520–1523.

    Article  PubMed  CAS  Google Scholar 

  32. Szyperski, T., Luginbühl, P., Otting, G., Güntert, P., and Wüthrich, K. (1993) Protein dynamics studied by rotating frame 15N spin relaxation times. J. Biomol. NMR 3, 151–164.

    PubMed  CAS  Google Scholar 

  33. Griesinger, C. and Ernst, R. R. (1987) Frequency offset effects and their elimination in NMR rotating-frame cross-relaxation spectroscopy. J. Magn. Reson. 75, 261–271.

    CAS  Google Scholar 

  34. Yamazaki, T., Muhandiram, R., and Kay, L. E. (1994) NMR experiments for the measurement of carbon relaxation properties in highly enriched, uniformly 13C,15N-labeled proteins: application to carbons. J. Am. Chem. Soc. 116, 8266–8278.

    Article  CAS  Google Scholar 

  35. Akke, M. and Palmer, A. G. (1996) Monitoring macromolecular motions on microsecond-millisecond time scales by -R1 constant-relaxation-time NMR spectroscopy. J. Am. Chem. Soc. 118, 911–912.

    Article  CAS  Google Scholar 

  36. Lipari, G. and Szabo, A. (1982) Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules, 1: theory and range of validity. J. Am. Chem. Soc. 104, 4546–4559.

    Article  CAS  Google Scholar 

  37. Lipari, G. and Szabo, A. (1982) Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules, 2: Analysis of experimental results. J. Am. Chem. Soc. 104, 4559–4570.

    Article  CAS  Google Scholar 

  38. Mandel, A. M., Akke, M., and Palmer, A. G. (1996) Dynamics of ribonuclease H: temperature dependence of motions on multiple time scales. Biochemistry 35, 16,009–16,023.

    Article  PubMed  CAS  Google Scholar 

  39. Kroenke, C. D., Loria, J. P., Lee, L. K., Rance, M., and Palmer, A. G. (1998) Longitudinal and transverse 1H-15N Dipolar/15N chemical shift anisotropy relaxation interference: unambiguous determination of rotational diffusion tensors and chemical exchange effects in biological macromolecules. J. Am. Chem. Soc. 120, 7905–7915.

    Article  CAS  Google Scholar 

  40. Tjandra, N., Szabo, A., and Bax, A. (1996) Protein backbone dynamics and 15N chemical shift anisotropy from quantitative measurement of relaxation interference effects. J. Am. Chem. Soc. 118, 6986–6991.

    Article  CAS  Google Scholar 

  41. Cavanagh, J., Fairbrother, W. J., Palmer, A. G., and Skelton, N. J. (1996) Protein NMR Spectroscopy: Principles and Practice, Academic Press, San Diego, CA.

    Google Scholar 

  42. Slichter, C. P. (1992) Advanced Concepts in Pulsed Magnetic Resonance. Principles of Magnetic Resonance, 3rd ed. Springer Series in Solid-State Sciences (Fulde, P., ed.), Springer-Verlag, New York.

    Google Scholar 

  43. Korzhnev, D. M., Tischenko, E. V., and Arseniev, A. S. (2000) Off-resonance effects in 15N T2 CPMG measurements. J. Biomol. NMR 17, 231–237.

    Article  PubMed  CAS  Google Scholar 

  44. Morris, G. A. and Freeman, R. (1979) Enhancement of nuclear magnetic-resonance signals by polarization transfer. J. Am. Chem. Soc. 101, 760–762.

    Article  CAS  Google Scholar 

  45. Kay, L. E., Keifer, P., and Saarinen, T. (1992) Pure absorption gradient enhanced heteronuclear single quantum correlation spectroscopy with improved sensitivity. J. Am. Chem. Soc. 114, 10,663–10,665.

    Article  CAS  Google Scholar 

  46. Cavanagh, J. and Rance, M. (1990) Sensitivity improvement in isotropic mixing (TOCSY) experiments. J. Magn. Reson. 88, 72–85.

    CAS  Google Scholar 

  47. Shaka, A. J., Barker, P. B., and Freeman, R. (1985) Computer-optimized decoupling scheme for wideband applications and low-level operation. J. Magn. Reson. 64, 547–552.

    CAS  Google Scholar 

  48. Brereton, I. M. (1997) Spectrometer calibration and experimental setup. In Protein NMR Techniques, vol. 60 (Reid, D. G., ed.). Humana, Totowa, NJ, pp. 363–410.

    Chapter  Google Scholar 

  49. Palmer, A. G., Skelton, N. J., Chazin, W. J., Wright, P. E., and Rance, M. (1992) Suppression of the effects of cross-correlation between dipolar and anisotropic chemical shift relaxation mechanisms in the measurement of spin-spin relaxation rates. Mol. Phys. 75, 699–711.

    Article  CAS  Google Scholar 

  50. Shaka, A. J., Keeler, J., Frenkiel, T., and Freeman, R. (1983) An improved sequence for broadband decoupling: WALTZ-16. J. Magn. Reson. 52, 335–338.

    CAS  Google Scholar 

  51. Shaka, A. J., Keeler, J., and Freeman, R. (1983) Evaluation of a new broadband decoupling sequence: WALTZ-16. J. Magn. Reson. 53, 313–340.

    CAS  Google Scholar 

  52. Boyd, J., Hommel, U., and Campbell, I. D. (1990) Influence of cross-correlation between dipolar and anisotropic chemical shift relaxation mechanisms upon longitudinal relaxation rates of nitrogen-15 in macromolecules. Chem. Phys. Lett. 175, 477–482.

    Article  CAS  Google Scholar 

  53. Kay, L. E., Nicholson, L. K., Delagio, F., Bax, A., and Torchia, D. A. (1992) Pulse sequences for removal of the effects of cross correlation between dipolar and chemical-shift anisotropy relaxation mechanisms on the measurement of heteronuclear T1 and T2 values in proteins. J. Magn. Reson. 97, 359–375.

    CAS  Google Scholar 

  54. Wang, C., Grey, M. J., and Palmer, A. G., III. (2001) CPMG sequences with enhanced sensitivity to chemical exchange. J. Biomol. NMR 21, 361–366.

    Article  PubMed  CAS  Google Scholar 

  55. Pervushin, K., Riek, R., Wider, G., and Wuthrich, K. (1997) Attenuated T2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc. Natl. Acad. Sci. USA 94, 12,366–12,371.

    Article  PubMed  CAS  Google Scholar 

  56. Salzmann, M., Pervushin, K., Wider, G., Senn, H., and Wuthrich, K. (1998) TROSY in triple-resonance experiments: new perspectives for sequential NMR assignment of large proteins. Proc. Natl. Acad. Sci. USA 95, 13,585–13,590.

    Article  PubMed  CAS  Google Scholar 

  57. Griffey, R. H. and Redfield, A. G. (1987) Proton-detected heteronuclear edited and correlated nuclear magnetic resonance and nuclear Overhauser effect in solution. Q. Rev. Biophys. 19, 51–82.

    Article  PubMed  CAS  Google Scholar 

  58. Goldman, M. (1984) Interference effects in the relaxation of a pair of unlike spin-1/2 nuclei. J. Magn. Reson. 60, 437–452.

    CAS  Google Scholar 

  59. Czisch, M. and Boelens, R. (1998) Sensitivity enhancement in the TROSY experiment. J. Magn. Reson. 134, 158–160.

    Article  PubMed  CAS  Google Scholar 

  60. Zhu, G., Kong, X., Yan, X., and Sze, K. (1998) Sensitivity enhancement in transverse relaxation optimized NMR spectroscopy. Angew. Chem. Int. Ed. Engl. 37, 2859–2861.

    Article  CAS  Google Scholar 

  61. Loria, J. P., Rance, M., and Palmer, A. G. (1999) Transverse-relaxation-optimized (TROSY) gradient-enhnaced triple-resonance NMR spectroscopy. J. Magn. Reson. 141, 180–184.

    Article  PubMed  CAS  Google Scholar 

  62. Rance, M., Loria, J. P., and Palmer, A. G. (1999) Sensitivity improvement of transverse relaxation-optimized spectroscopy. J. Magn. Reson. 136, 92–101.

    Article  PubMed  CAS  Google Scholar 

  63. Loria, J. P., Rance, M., and Palmer, A. G. (1999) A TROSY CPMG sequence for characterizing chemical exchange in large proteins. J. Biomol. NMR 15, 151–155.

    Article  PubMed  CAS  Google Scholar 

  64. Mori, S., Abeygunawardana, C., O’Neil Johnson, M., and van Zijl, P. C. M. (1995) Improved sensitivity of HSQC spectra of exchanging protons at short interscan delays using a new fast HSQC (FHSQC) detection scheme that avoids water saturation. J. Magn. Reson., Ser. B 108, 94–98.

    Article  CAS  Google Scholar 

  65. Mueller, L., Legault, P., and Pardi, A. (1995) Improved RNA structure determination by detection of NOE contacts to exchange-broadened amino protons. J. Am. Chem. Soc. 117, 11,043–11,048.

    Article  CAS  Google Scholar 

  66. Mulder, F. A. A., Spronk, C. A. E. M., Slijper, M., Kaptein, R., and Boelens, R. (1996) Improved HSQC experiments for the observation of exchange broadened signals. J. Biomol. NMR 8, 223–228.

    Article  CAS  Google Scholar 

  67. Gullion, T., Baker, D. B., and Conradi, M. S. (1990) New, compensated Carr-Purcell sequences. J. Magn. Reson. 89, 479–484.

    CAS  Google Scholar 

  68. Cole, R. and Loria, J. P. (2002) Evidence for flexibility in the function of ribonuclease A. Biochemistry 41, 6072–6081.

    Article  PubMed  CAS  Google Scholar 

  69. Shoemaker, D. P., Garland, C. W., and Nibler, J. W. (1989) Experiments in Physical Chemistry. 5th ed. McGraw-Hill, New York.

    Google Scholar 

  70. Jones, J. A. (1997) Optimal sampling strategies for the measurement of relaxation times in proteins. J. Magn. Reson. 126, 283–286.

    Article  CAS  Google Scholar 

  71. Weitekamp, D. P. (1983) Time-domain multiple-quantum NMR. Adv. Magn. Reson. 11, 111–273.

    CAS  Google Scholar 

  72. Kempf, J. G., Jung, J., Sampson, N. S., and Loria, J. P. (2003). Off-resonance TROSY (-R 1) for quantitation of fast exchange Processes in large proteins. J. Am. Chem. Soc. 125, 12,064–12,065.

    Article  PubMed  CAS  Google Scholar 

  73. Ugurbil, K., Garwood, M., and Rath, J. R. (1988) Optimization of modulation functions to improve insensitivity of adiabatic pulses to variations in B1 magnitude. J. Magn. Reson. 80, 448–469.

    Google Scholar 

  74. Garwood, M. and Yong, K. (1991) Symmetric pulses to induce arbitrary flip angles with compensation of RF inhomogeneity and resonance offsets. J. Magn. Reson. 94, 511–525.

    Google Scholar 

  75. Korzhnev, D. M., Skyrnnikov, N. R., Millet, O., Torchia, D., and Kay, L. E. (2002) An NMR experiment for the accurate measurement of heteronuclear spin-lock relaxation rates. J. Am. Chem. Soc. 124, 10,743–10,753.

    Article  PubMed  CAS  Google Scholar 

  76. Ernst, R. R. (1966) Nuclear magnetic double resonance with an incoherent radiofrequency field. J. Chem. Phys. 45, 3845–3861.

    Article  CAS  Google Scholar 

  77. Wang, A. C. and Bax, A. (1993) Minimizing the effects of radio-frequency heating in multidimensional NMR experiments. J. Biomol. NMR 3, 715–720.

    Article  PubMed  CAS  Google Scholar 

  78. Hartmann, S. R. and Hahn, E. L. (1962) Nuclear double resonance in the rotating frame. Phys. Rev. 128, 2042–2053.

    Article  CAS  Google Scholar 

  79. Shaka, A. J. and Keeler, J. (1987) Broadband spin decoupling in isotropic liquids. Prog. NMR Spectrosc. 19, 47–129.

    Article  CAS  Google Scholar 

  80. Bax, A., Ikura, M., Kay, L. E., Torchia, D. A., and Tschudin, R. (1990) Comparison of different modes of two-dimensional reverse-correlation NMR for the study of proteins. J. Magn. Reson. 86, 304–318.

    CAS  Google Scholar 

  81. Skelton, N. J., Palmer, A. G., Akke, M., Kördel, J., Rance, M., and Chazin, W. J. (1993) Practical aspects of two-dimensional proton-detected 15N spin relaxation measurements. J. Magn. Reson., Ser. B 102, 253–264.

    Article  CAS  Google Scholar 

  82. Evenas, J., Malmendal, A., and Akke, M. (2001) Dynamics of the transition between open and closed conformations in a calmodulin C-terminal domain mutant. Structure 9, 185–195.

    Article  PubMed  CAS  Google Scholar 

  83. Loening, N. M. and Keeler, J. (2002) Temperature accuracy and temperature gradients in solution-state NMR spectrometers. J. Magn. Reson. 159, 55–61.

    Article  PubMed  CAS  Google Scholar 

  84. Skrynnikov, N. R., Mulder, F. A., Hon, B., Dahlquist, F. W., and Kay, L. E. (2001) Probing slow time scale dynamics at methyl-containing sidechains in proteins by relaxation dispersion NMR measurements: application to methionine residues in a cavity mutant of T4 lysozyme. J. Am. Chem. Soc. 123, 4556–4566.

    Article  PubMed  CAS  Google Scholar 

  85. Mulder, F. A., Skrynnikov, N. R., Hon, B., Dahlquist, F. W., and Kay, L. E. (2001) Measurement of slow (micros-ms) time scale dynamics in protein sidechains by (15)N relaxation dispersion NMR spectroscopy: application to Asn and Gln residues in a cavity mutant of T4 lysozyme. J. Am. Chem. Soc. 123, 967–975.

    Article  PubMed  CAS  Google Scholar 

  86. Guenneugues, M., Berthault, P., and Desvaux, H. (1999) A method for determining B1 field inhomogeneity: are the biases assumed in heteronuclear relaxation experiments usually underestimated? J. Magn. Reson. 136, 118–126.

    Article  PubMed  CAS  Google Scholar 

  87. Marion, D., Ikura, M., Tschudin, R., and Bax, A. (1989) Rapid recording of 2D NMR spectra without phase cycling: application to the study of hydrogen exchange in proteins. J. Magn. Reson. 85, 393–399.

    CAS  Google Scholar 

  88. Cavanagh, J., Palmer, A. G., Wright, P. E., and Rance, M. (1991) Sensitivity improvement in proton-detected two-dimensional heteronuclear relay spectroscopy. J. Magn. Reson. 91, 429–436.

    CAS  Google Scholar 

  89. Palmer, A. G., Cavanagh, J., Wright, P. E., and Rance, M. (1991) Sensitivity improvement in proton-detected two-dimensional heteronuclear correlation NMR spectroscopy. J. Magn. Reson. 93, 151–170.

    CAS  Google Scholar 

  90. Sklenár, V., Piotto, M., Leppik, R., and Saudek, V. (1993) Gradient-tailored water suppression for H-1-N-15 HSQC experiments optimized to retain full sensitivity. J. Magn. Reson., Ser. A 102, 241–245.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc., Towowa, NJ

About this protocol

Cite this protocol

Kempf, J.G., Loria, J.P. (2004). Measurement of Intermediate Exchange Phenomena. In: Downing, A.K. (eds) Protein NMR Techniques. Methods in Molecular Biology™, vol 278. Humana Press. https://doi.org/10.1385/1-59259-809-9:185

Download citation

  • DOI: https://doi.org/10.1385/1-59259-809-9:185

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-246-9

  • Online ISBN: 978-1-59259-809-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics