Skip to main content

Characterization of the Overall Rotational Diffusion of a Protein From 15N Relaxation Measurements and Hydrodynamic Calculations

  • Protocol
Protein NMR Techniques

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 278))

Abstract

In this chapter, we discuss experimental and theoretical methods for characterizing the overall rotational diffusion of molecules in solution. The methods are illustrated for the B3 domain of protein G, a small protein with rotational anisotropy of D par/D perp = 1.4. The rotational diffusion tensor of the protein is determined directly from 15N relaxation measurements. The experimental data are treated assuming various possible models for the overall tumbling: isotropic, axially symmetric, and fully anisotropic, and the results of these analyses are compared to determine an adequate diffusion model for the protein. These experimentally derived characteristics of the protein are compared with the results of theoretical calculations of the diffusion tensor using various hydrodynamic models, to find optimal models and parameter sets for theoretical predictions. We also derive model-free characteristics of internal backbone motions in the protein, to show that different models for the overall motion can result in significantly different pictures of motion. This emphasizes the necessity of accurately characterizing the overall tumbling of a molecule to determine its local dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fushman, D. and Cowburn, D. (1998) Studying protein dynamics with NMR relaxation. In Structure, Motion, Interaction and Expression of Biological Macromolecules (Sarma, R. and Sarma, M., eds.). Adenine Press, Albany, NY, pp. 63–77.

    Google Scholar 

  2. Schurr, J. M., Babcock, H. P., and Fujimoto, B. S. (1994) A test of the model-free formulas: effects of anisotropic rotational diffusion and dimerization. J. Magn. Reson. B105, 211–224.

    Google Scholar 

  3. Hall, J. B. and Fushman, D. (2003) Characterization of the overall and local dynamics of a protein with intermediate rotational anisotropy: differentiating between conformational exchange and anisotropic diffusion in the B3 domain of protein G. J. Biomol. NMR 27, 261–275.

    Article  PubMed  CAS  Google Scholar 

  4. Tjandra, N., Wingfield, P., Stahl, S., and Bax, A. (1996) Anisotropic rotational diffusion of predeuterated HIV protease from 15N NMR relaxation measurements at two magnetic fields. J. Biomol. NMR 8, 273–284.

    Article  PubMed  CAS  Google Scholar 

  5. Luginbuhl, P., Pervushin, K. V., Iwai, H., and Wuthrich, K. (1997) Anisotropic molecular rotational diffusion in 15N spin relaxation studies of protein mobility. Biochemistry 36, 7305–7312.

    Article  PubMed  CAS  Google Scholar 

  6. Eisenmesser, E. Z., Bosco, D. A., Akke, M., and Kern, D. (2002) Enzyme dynamics during catalysis. Science 295, 1520–1523.

    Article  PubMed  CAS  Google Scholar 

  7. Fushman, D., Xu, R., and Cowburn, D. (1999) Direct determination of changes of interdomain orientation on ligation: use of the orientational dependence of 15N NMR relaxation in Abl SH(32) Biochemistry 38, 10,225–10,230.

    Article  PubMed  CAS  Google Scholar 

  8. Varadan, R., Walker, O., Pickart, C., and Fushman, D. (2002) Structural properties of polyubiquitin chains in solution. J. Mol. Biol. 324, 637–647.

    Article  PubMed  CAS  Google Scholar 

  9. Tjandra, N., Garrett, D. S., Gronenborn, A. M., Bax, A., and Clore, G. M. (1997) Defining long range order in NMR structure determination from the dependence of heteronuclear relaxation times on rotational diffusion anisotropy. Nat. Struct. Biol. 4, 443–449.

    Article  PubMed  CAS  Google Scholar 

  10. Akerud, T., Thulin, E., Van Etten, R. L., and Akke, M. (2002) Intramolecular dynamics of low molecular weight protein tyrosine phosphatase in monomer-dimer equilibrium studied by NMR: a model for changes in dynamics upon target binding. J. Mol. Biol. 322, 137–152.

    Article  PubMed  CAS  Google Scholar 

  11. Tjandra, N., Feller, S. E., Pastor, R. W., and Bax, A. (1995) Rotational diffusion anisotropy of human ubiquitin from 15N NMR relaxation. J. Am. Chem. Soc. 117, 12,562–12,566.

    Article  CAS  Google Scholar 

  12. Lee, L. K., Rance, M., Chazin, W. J., and Palmer, A. G., III. (1997) Rotational diffusion anisotropy of proteins from simultaneous analysis of 15N and 13C alpha nuclear spin relaxation. J. Biomol. NMR 9, 287–298.

    Article  PubMed  CAS  Google Scholar 

  13. Copie, V., Tomita, Y., Akiyama, S. K., et al. (1998) Solution structure and dynamics of linked cell attachment modules of mouse fibronectin containing the RGD and synergy regions: comparison with the human fibronectin crystal structure. J. Mol. Biol. 277, 663–682.

    Article  PubMed  CAS  Google Scholar 

  14. Blackledge, M., Cordier, F., Dosset, P., and Marion, D. (1998) Precision and uncertainty in the characterization of anisotropic rotational diffusion by 15N relaxation. J. Am. Chem. Soc. 120, 4538, 4539.

    Article  CAS  Google Scholar 

  15. Dosset, P., Hus, J. C., Blackledge, M., and Marion, D. (2000) Efficient analysis of macromolecular rotational diffusion from heteronuclear relaxation data. J. Biomol. NMR 16, 23–28.

    Article  PubMed  CAS  Google Scholar 

  16. Ghose, R., Fushman, D., and Cowburn, D. (2001) Determination of the rotational diffusion tensor of macromolecules in solution from NMR relaxation data with a combination of exact and approximate methods—application to the determination of interdomain orientation in multidomain proteins. J. Magn. Reson. 149, 214–217.

    Article  Google Scholar 

  17. Fushman, D., Varadan, R., Assfalg, M., et al. (2004). Determining domain orientation in macromolecules by using spin-relaxation and residual dipolar coupling measurements. Prog. NMR Spectr., in press.

    Google Scholar 

  18. Fushman, D., Varadan, R., Assfalg, M., and Walker, O. (2004) Determining domain orientation in macromolecules by using spin-relaxation and residual dipolar coupling measurements. Prog. NMR Spectr., in press.

    Google Scholar 

  19. Gronenborn, A. M., Filpula, D. R., Essig, N. Z., et al. (1991) A novel highly stable fold of the immunoglobulin binding domain of streptococcal protein G. Science 253, 657–661.

    Article  PubMed  CAS  Google Scholar 

  20. Achari, A., Hale, S. P., Howard, A. J., et al. (1992) 1.67-A X-ray structure of the B2 immunoglobulin-binding domain of streptococcal protein G and comparison to the NMR structure of the B1 domain. Biochemistry 31, 10,449–10,457.

    Article  PubMed  CAS  Google Scholar 

  21. Derrick, J. P. and Wigley, D. B. (1992) Crystal structure of a streptococcal protein G domain bound to a Fab fragment. Nature 359, 752–754.

    Article  PubMed  CAS  Google Scholar 

  22. Derrick, J. P., Wigley, D. B., Lian, L. Y., et al. (1993) Structure and mechanism of streptococcal protein G. Biochem. Soc. Trans. 21, 333S.

    PubMed  CAS  Google Scholar 

  23. Gallagher, T., Alexander, P., Bryan, P., and Gilliland, G. L. (1994) Two crystal structures of the B1 immunoglobulin-binding domain of streptococcal protein G and comparison with NMR. Biochemistry 33, 4721–4729.

    Article  PubMed  CAS  Google Scholar 

  24. Derrick, J. P. and Wigley, D. B. (1994) The third IgG-binding domain from streptococcal protein G: an analysis by X-ray crystallography of the structure alone and in a complex with Fab. J. Mol. Biol. 243, 906–918.

    Article  PubMed  CAS  Google Scholar 

  25. Lian, L. Y., Derrick, J. P., Sutcliffe, M. J., Yang, J. C., and Roberts, G. C. (1992) Determination of the solution structures of domains II and III of protein G from Streptococcus by 1H nuclear magnetic resonance. J. Mol. Biol. 228, 1219–1234.

    Article  PubMed  CAS  Google Scholar 

  26. Fushman, D., Cahill, S., and Cowburn, D. (1997) The main chain dynamics of the dynamin pleckstrin homology (PH) domain in solution: analysis of 15N relaxation with monomer/dimer equilibration. J. Mol. Biol. 266, 173–194.

    Article  PubMed  CAS  Google Scholar 

  27. Fushman, D., Tjandra, N., and Cowburn, D. (1999) An approach to direct determination of protein dynamics from 15N NMR relaxation at multiple fields, independent of variable 15N chemical shift anisotropy and chemical exchange contributions. J. Am. Chem. Soc. 121, 8577–8582.

    Article  CAS  Google Scholar 

  28. Fushman, D. (2002) Determination of protein dynamics using 15N relaxation measurements. In BioNMR in Drug Research (Zerbe, O., ed.). Wiley-VCH, New York, pp. 283–308.

    Chapter  Google Scholar 

  29. Fushman, D. and Cowburn, D. (2002) Characterization Of inter-domain orientations in solution using the NMR relaxation approach. In Protein NMR for the Millenium: Biological Magnetic Resonance, vol. 20 (Krishna, N. R., ed.). Kluwer, Dordrecht, The Netherlands, pp. 53–78.

    Google Scholar 

  30. Fushman, D., Cahill, S., and Cowburn, D. (1997) The main-chain dynamics of the dynamin pleckstrin homology (PH) domain in solution: analysis of 15N relaxation with monomer/dimer equilibration. J. Mol. Biol. 266, 173–194.

    Article  PubMed  CAS  Google Scholar 

  31. Fushman, D., Weisemann, R., Thüring, H., and Rüterjans, H. (1994) Backbone dynamics of ribonuclease T1 and its complex with 2′GMP studied by twodimensional heteronuclear NMR spectroscopy. J. Biomol. NMR 4, 61–78.

    Article  CAS  Google Scholar 

  32. Draper, N. R. and Smith, H. (1981) Applied Regression Analysis. Wiley, New York.

    Google Scholar 

  33. Goldstein, H. (1980) Classical Mechanics. 2nd ed. Addison-Wesley, Boston.

    Google Scholar 

  34. Koenig, S. (1975) Brownian motion of an ellipsoid. Correction to Perrin’s results. Biopolymers 14, 2421–2423.

    Article  CAS  Google Scholar 

  35. Cantor, C. R. and Schimmel, P. R. (1980) Biophysical Chemistry. 3 vols. Freeman, New York.

    Google Scholar 

  36. Tirado, M. M. and de la Torre, J. G. (1980) Rotational dynamics of rigid, symmetric top macromolecules: application to circular cylinders. J. Chem. Phys. 73, 1986–1993.

    Article  CAS  Google Scholar 

  37. Fushman, D. (1990) Surface fractality of proteins from theory and NMR data. J. Biomol. Struct. Dyn. 7, 1333–1344.

    PubMed  CAS  Google Scholar 

  38. de la Torre, J. G., Navarro, S., Martinez, M. C. L., Diaz, F. G., and Cascales, J. J. L. (1994) HYDRO: Acomputer program for the prediction of hydrodynamic properties of macromolecules. Biophys. J. 67, 530, 531.

    Article  Google Scholar 

  39. de la Torre, J. G., Huertas, M. L., and Carrasco, B. (2000) HYDRONMR: prediction of NMR relaxation of globular proteins from atomic-level structures and hydrodynamic calculations. J. Magn. Reson. B147, 138–146.

    Article  Google Scholar 

  40. Lipari, G. and Szabo, A. (1982) Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 1. Theory and range of validity. J. Am. Chem. Soc. 104, 4546–4559.

    Article  CAS  Google Scholar 

  41. DeLano, W. L. (2002) The PyMOL Molecular Graphics System. DeLano Scientific, San Carlos, CA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Blake-Hall, J., Walker, O., Fushman, D. (2004). Characterization of the Overall Rotational Diffusion of a Protein From 15N Relaxation Measurements and Hydrodynamic Calculations. In: Downing, A.K. (eds) Protein NMR Techniques. Methods in Molecular Biology™, vol 278. Humana Press. https://doi.org/10.1385/1-59259-809-9:139

Download citation

  • DOI: https://doi.org/10.1385/1-59259-809-9:139

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-246-9

  • Online ISBN: 978-1-59259-809-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics