Skip to main content

Perdeuteration/Site-Specific Protonation Approaches for High-Molecular-Weight Proteins

  • Protocol
Protein NMR Techniques

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 278))

Abstract

Among the factors that limit the application of nuclear magnetic resonance (NMR) to biological macromolecules are increasing resonance overlap and fast transverse relaxation. Multidimensional NMR combined with 13C and 15N labeling has alleviated these problems temporarily; however, they resurface at molecular weight (mol wt) in excess of 30 kDa. Combined perdeuteration/site-specific protonation together with segmental labeling (see Chapter 4), transverse relaxation-optimized spectroscopy (TROSY) (see Chapter 5), and residual dipolar couplings (see Chapter 7) have all helped to dramatically extend the mol wt limit. This article describes some of the practical aspects of the combined perdeuteration/site-specific protonation approach, which has proved so useful in the global fold determination of large proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Shan, X., Gardner, K. H., Muhandiram, D. R., Rao, N. S., Arrowsmith, C. H., and Kay, L. E. (1996) Assignment of 15N, 13Cα, 13Cβ and HN resonances in an 15N, 13C, 2H labeled 64 kDa trp repressor-operator complex using triple resonance NMR spectroscopy and 2H-decoupling. J. Am. Chem. Soc. 118, 6570–6579.

    Article  CAS  Google Scholar 

  2. Yamazaki, T., Lee, W., Arrowsmith, C. H., Muhandiram, D. R., and Kay, L. (1994) A suite of triple resonance NMR experiments for the backbone assignment of 15N, 13C, 2H labeled proteins with high sensitivity. J. Am. Chem. Soc. 116, 11,655–11,666.

    Article  CAS  Google Scholar 

  3. Pervushin, K., Riek, R., Wider, G., and Wuthrich, K. (1997) Attenuated T-2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc. Natl. Acad. Sci. USA 94, 12,366–12,371.

    Article  PubMed  CAS  Google Scholar 

  4. Riek, R., Pervushin, K., and Wuthrich, K. (2000) TROSY and CRINEPT: NMR with large molecular and supramolecular structures in solution. Trends Biochem. Sci. 25, 462–468.

    Article  PubMed  CAS  Google Scholar 

  5. Riek, R., Fiaux, J., Bertelsen, E. B., Horwich, A. L., and Wuthrich, K. (2002) Solution NMR techniques for large molecular and supramolecular structures. J. Am. Chem. Soc. 124, 12,144–12,153.

    Article  PubMed  CAS  Google Scholar 

  6. Fiaux, J., Bertelsen, E. B., Horwich, A. L., and Wuthrich, K. (2002) NMR analysis of a 900K GroEL-GroES complex. Nature 418, 207–211.

    Article  PubMed  CAS  Google Scholar 

  7. Salzmann, M., Pervushin, K., Wider, G., Senn, H., and Wuthrich, K. (2000) NMR assignment and secondary structure determination of an octameric 110 kDa protein using TROSY in triple resonance experiments. J. Am. Chem. Soc. 122, 7543–7548.

    Article  CAS  Google Scholar 

  8. Tugarinov, V., Muhandiram, R., Ayed, A., and Kay, L. E. (2002) Four-dimensional NMR spectroscopy of a 723-residue protein: chemical shift assignments and secondary structure of malate synthase G. J. Am. Chem. Soc. 124, 10,025–10,035.

    Article  PubMed  CAS  Google Scholar 

  9. Mal, T. K., Matthews, S. J., Kovacs, H., Campbell, I. D., and Boyd, J. (1998) Some NMR experiments and a structure determination employing a {N-15,H-2} enriched protein. J. Biomol. NMR 12, 259–276.

    Article  PubMed  CAS  Google Scholar 

  10. Gardner, K. H., Rosen, M. K., and Kay, L. E. (1997) Global folds of highly deuterated, methyl-protonated proteins by multidimensional NMR. Biochemistry 36, 1389–1401.

    Article  PubMed  CAS  Google Scholar 

  11. Metzler, W. J., Wittekind, M., Goldfarb, V., Mueller, L., and Farmer, B. T. (1996) Incorporation of 1H/13C/15N-(Ile, Leu, Val) into a perdeuterated, 15N-labeled protein: potential in structure determination of large proteins by NMR. J. Am. Chem. Soc. 118, 6800, 6801.

    Article  CAS  Google Scholar 

  12. Smith, B. O., Ito, Y., Raine, A., Teichmann, S., Ben-Tovim, L., Nietlispach, D., et al. (1996) An approach to global fold determination using limited NMR data from larger proteins selectively protonated at specific residues. J. Biomol. NMR 8, 360–368.

    Article  PubMed  CAS  Google Scholar 

  13. Rosen, M. K., Gardner, K. H., Willis, R. C., Parris, W. E., Pawson, T., and Kay, L. E. (1996) Selective methyl group protonation of perdeuterated proteins. J. Mol. Biol. 263, 627–636.

    Article  PubMed  CAS  Google Scholar 

  14. Gardner, K. H. and Kay, L. E. (1997) Production and incorporation of N-15, C-13, H-2 (H-1-delta 1 methyl) isoleucine into proteins for multidimensional NMR studies. J. Am. Chem. Soc. 119, 7599, 7600.

    Article  CAS  Google Scholar 

  15. Zwahlen, C., Vincent, S. J. F., Gardner, K. H., and Kay, L. E. (1998) Significantly improved resolution for NOE correlations from valine and isoleucine (C-gamma 2) methyl groups in N-15,C-13-and N-15,C-13,H-2-labeled proteins. J. Am. Chem. Soc. 120, 4825–4831.

    Article  CAS  Google Scholar 

  16. Goto, N. K., Gardner, K. H., Mueller, G. A., Willis, R. C., and Kay, L. E. (1999) A robust and cost-effective method for the production of Val, Leu, Ile (delta 1) methyl-protonated N-15-, C-13-, H-2-labeled proteins. J. Biomol. NMR 13, 369–374.

    Article  PubMed  CAS  Google Scholar 

  17. Wang, H., Janowick, D. A., Schkeryantz, J. M., Liu, X., and Fesik, S. W. (1999) A method for assigning phenylalanines in proteins. J. Am. Chem. Soc. 121, 1611, 1612.

    Article  CAS  Google Scholar 

  18. Johnson, B. A. and Blevins, R. A. (1994) NMRView: a computer program for the visualization and analysis of NMR data. J. Biomol. NMR 4, 603–614.

    Article  CAS  Google Scholar 

  19. Stein, E., G., Rice, L. M., and Brünger, A. T. (1997) Torsion-angle molecular dynamics as a new efficient tool for NMR structure calculation. J. Magn. Reson. B 124, 154–164.

    Article  CAS  Google Scholar 

  20. Nilges, M., Gronenborn, A. M., and Clore, G. M. (1988) Determination of 3-dimensional structures of proteins by simulated annealing with interproton distance restraints—application to crambin, potato carboxypeptidase inhibitor and barley serine proteinase inhibitor-2. Protein Eng. 2, 27–38.

    Article  PubMed  CAS  Google Scholar 

  21. BrĂĽnger, A. T. (1992) XPLOR Manual Ver. 3.1. Yale University, New Haven, CT.

    Google Scholar 

  22. Brünger, A. T., Adams, P. D., Clore, G. M., DeLanod, W. L., Grose, P., Grosse-Kunstleve, R. W., et al. (1998) Crystallography and NMR system: a new software suite for macromolecular structure determination. Acta. Crystallogr. D Biol. Crystallogr. D54, 905–921.

    Article  Google Scholar 

  23. Kelly, G., Prasannan, S., Daniell, S., Frankel, G., Dougan, G., Connerton, I., et al. (1998) Sequential assignment of the triple labeled 30.1 kDa cell-adhesion domain of intimin from enteropathogenic E-coli. J. Biomol. NMR 12, 189–191.

    Article  PubMed  CAS  Google Scholar 

  24. Kelly, G., Prasannan, S., Daniell, S., Fleming, K., Frankel, G., Dougan, G., et al. (1999) Structure of the cell-adhesion fragment of intimin from enteropathogenic Escherichia coli. Nat. Struct. Biol. 6, 313–318.

    Article  PubMed  CAS  Google Scholar 

  25. Delaglio, F., Grzesiek, S., Vuister, G. W., Zhu, G., Pfeifer, J., and Bax, A. (1995) NMRPipe: a multidimensional spectral processing system based on Unix pipes. J. Biomol. NMR 6, 277–293.

    Article  PubMed  CAS  Google Scholar 

  26. Norwood, T. J., Boyd, J., Heritage, J. E., Soffe, N., and Campbell, I. D. (1990) Comparison of techniques for 1H-detected heteronuclear 1H-15N spectroscopy. J. Magn. Reson. B 87, 488–501.

    CAS  Google Scholar 

  27. Marion, D., Driscoll, P. C., Kay, L. E., Wingfield, P. T., Bax, A., Gronenborn, A., et al. (1989) Overcoming the overlap problem in the assignment of larger proteins by the use of three-dimensional heteronuclear 1H-15N Hartmann-Hahn-multiple quantum coherence and nuclear Overhauser multiple quantum coherence spectroscopy: application to interleukin 1. Biochemistry 28, 6150–6156.

    Article  PubMed  CAS  Google Scholar 

  28. Vuister, G. W., Clore, G. M., Gronenborn, A. M., Powers, R., Garrett, D. S., Tschudin, R., et al. (1993) Increased resolution and improved spectral quality in 4-dimensional 13C/13C-separated HMQC-NOESY-HMQC spectra using pulsed field gradients. J. Magn. Reson. B 101, 210–213.

    Article  CAS  Google Scholar 

  29. Cornilescu, G., Delaglio, F., and Bax, A. (1999) Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J. Biomol. NMR 13, 289–302.

    Article  PubMed  CAS  Google Scholar 

  30. Goto, N. K. and Kay, L. E. (2000) New developments in isotope labeling strategies for protein solution NMR spectroscopy. Curr. Opin. Struct. Biol. 10, 585–592.

    Article  PubMed  CAS  Google Scholar 

  31. Mulder, F. A. A., Ayed, A., Yang, D. W., Arrowsmith, C. H., and Kay, L. E. (2000) Assignment of H-1(N), N-15, C-13(alpha), (CO)-C-13 and C-13(beta) resonances in a 67 kDa p53 dimer using 4D-TROSY NMR spectroscopy. J. Biomol. NMR 18, 173–176.

    Article  PubMed  CAS  Google Scholar 

  32. Medek, A., Olejniczak, E. T., Meadows, R. P., and Fesik, S. W. (2000) An approach for high-throughput structure determination of proteins by NMR spectroscopy. J. Biomol. NMR 18, 229–238.

    Article  PubMed  CAS  Google Scholar 

  33. Aghazadeh, B., Zhu, K., Kubiseski, T. J., Liu, G. A., Pawson, T. P., Zheng, Y., et al. (1998) Structure and mutagenesis of the Dbl homology domain. Nat. Struct. Biol. 5, 1098–1107.

    Article  PubMed  CAS  Google Scholar 

  34. Arora, A., Abildgaard, F., Bushweller, J. H., and Tamm, L. K. (2001) Structure of outer membrane protein A transmembrane domain by NMR spectroscopy. Nat. Struct. Biol. 8, 334–338.

    Article  PubMed  CAS  Google Scholar 

  35. Venter, R. A., Farmer, B. T., Fierke, C. A., and Spicer, L. D. (1996) Characterizing the use of perdeuteration in NMR studies of large proteins: C-13, N-15 and H-1 assignments of human carbonic anhydrase II. J. Mol. Biol. 264, 1101–1116.

    Article  Google Scholar 

  36. Wishart, D. S. and Sykes, B. D. (1994) The 13C chemical shift index: a simple method for the identification of protein secondary structure using 13C chemical shift data. J. Biomol. NMR 4, 171–180.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Matthews, S. (2004). Perdeuteration/Site-Specific Protonation Approaches for High-Molecular-Weight Proteins. In: Downing, A.K. (eds) Protein NMR Techniques. Methods in Molecular Biology™, vol 278. Humana Press. https://doi.org/10.1385/1-59259-809-9:035

Download citation

  • DOI: https://doi.org/10.1385/1-59259-809-9:035

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-246-9

  • Online ISBN: 978-1-59259-809-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics