Skip to main content

Screening and Optimizing Protein Production in E. coli

  • Protocol
Protein NMR Techniques

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 278))

Abstract

Significant improvements in the technologies used for protein production have been driven by impending genome-scale proteomics projects. These initiatives have favored Escherichia coli-based expression systems, which allow rapid cloning and expression of proteins at low cost. The range of commercially available molecular biology kits, vectors, affinity tags, and host cell lines have increased dramatically in recent years. For the structural biology community, where protein production is often a rate-limiting step, these developments have made the process of producing and purifying large amounts of protein for structural studies simpler and faster. The large-scale automated screening approaches for optimizing protein production employed by structural genomics initiatives can be adapted to a more practical targeted approach appropriate for individual structural biology groups. This chapter describes simple, rapid screening methods for testing optimal vector/host combinations using a 96-well format.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Edwards, A. M., Arrowsmith, C. H., Christendat, D., Dharamsi, A., Friesen, J. D., Greenblatt, J. F., et al. (2000) Protein production: feeding the crystallographers and NMR spectroscopists. Nat. Struct. Biol. 7, 970–972.

    Article  PubMed  CAS  Google Scholar 

  2. Coughlin, P. E., Anderson, F. E., Oliver, E. J., Brown, J. M., Homans, S. W., Pollak, S., et al. (1999) Improved resolution and sensitivity of triple-resonance NMR methods for the structural analysis of proteins by use of backbone-labeling strategy. J. Am. Chem. Soc. 121, 11,871–11,874.

    Article  CAS  Google Scholar 

  3. Creemers, A. F. L., Klaassen, C. H. W., Bovee-Geurts, P. H. M., Kelle, R., Kragl, U., Raap, J., et al. (1999) Solid state 15N NMR evidence for a complex Schiff base counterion in the visual G-protein coupled receptor rhodopsin. Biochemistry 38, 7195–7199.

    Article  PubMed  CAS  Google Scholar 

  4. Jermutus, L., Ryabova, L. A., and Pluckthun, A. (1998) Recent advances in producing and selecting functional proteins by using cell-free translation. Curr. Opin. Biotechnol. 9, 534–548.

    Article  PubMed  CAS  Google Scholar 

  5. Kigawa, T., Yabuki, T., Yoshida, Y., Tsutsui, M., Ito, Y., Shibata, T., et al. (1999) Cell-free production and stable-isotope labeling of milligram quantities of proteins. FEBS Lett. 442, 15–19.

    Article  PubMed  CAS  Google Scholar 

  6. Guignard, L., Ozawa, K., Pursglove, S. E., Otting, G., and Dixon, N. E. (2002) NMR analysis of in vitro-synthesized proteins without purification: a high throughput approach. FEBS Lett. 524, 159–162.

    Article  PubMed  CAS  Google Scholar 

  7. Harwood, A. J. (1996) Basic DNA and RNA protocols. In Methods in Molecular Biology, vol. 58 (Walker, J. M., ed.). Humana, Totowa, NJ, pp.

    Google Scholar 

  8. Strausberg, R. L., Feingold, E. A., Klausner, R. D., and Collins, F. S. (1999) The mammalian gene collection. Science 286, 455–457.

    Article  PubMed  CAS  Google Scholar 

  9. Stewart, L., Clark, R., and Behnke, C. (2002) High-throughput crystallisation and structure determination in drug discovery. Drug Discov. Today 7, 187–196.

    Article  PubMed  CAS  Google Scholar 

  10. Liu, Q., Li, M. Z., Leibham, D., Cortez, D., and Elledge, S. J. (1998) The univector plasmid-fusion system, a method for rapid construction of recombinant DNA without restriction enzymes. Curr. Biol. 8, 1300–1309.

    Article  PubMed  CAS  Google Scholar 

  11. Studier, F. W. (1991) Use of T7 RNA polymerase to direct expression of cloned genes. Meth. Enzymol. 185, 286–299.

    Google Scholar 

  12. Miroux, B. and Walker, J. E. (1996) Overproduction of proteins in Escherichia coli: mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. J. Mol. Biol. 260, 289–298.

    Article  PubMed  CAS  Google Scholar 

  13. Sambrook, J. (1989) Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Woodbury, NY.

    Google Scholar 

  14. Wallace, R. B., Shaffer, J., Murphy, R. F., Bonner, J., Hirose, T., and Itakura, K. (1979) Hybridization of synthetic oligodeoxyribonucleotides to phi chi 174 DNA: the effect of a single base pair mismatch. Nucleic Acids Res. 6, 3543–3557.

    Article  PubMed  CAS  Google Scholar 

  15. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of the bacteriophage T4. Nature 227, 680–685.

    Article  PubMed  CAS  Google Scholar 

  16. Burgess, R. R. (1991) Use of polyethylenimine in purification of DNA-binding proteins. Meth. Enzymol. 208, 3–11.

    Article  PubMed  CAS  Google Scholar 

  17. Blackwell, J. R. and Horgan, R. (1991) A novel strategy for production of a highly expressed recombinant protein in an active form. FEBS Lett. 295, 10–12.

    Article  PubMed  CAS  Google Scholar 

  18. Georgiou, G. and Valax, P. (1996) Expression of correctly folded proteins in Escherichia coli. Curr. Opin. Biotechnol. 7, 190–197.

    Article  PubMed  CAS  Google Scholar 

  19. Battistoni, A., Mazzetti, A. P., and Rotilio, G. (1999) In vivo formation of Cu, Zn superoxide dismutase disulfide bond in Escherichia coli. FEBS Lett. 443, 313–316.

    Article  PubMed  CAS  Google Scholar 

  20. Davis, G. D., Elisee, C., Newham, D. M., and Harrison, R. G. (1999) New fusion protein systems designed to give soluble expression in Escherichia coli. Biotechnol. Bioeng. 65, 382–388.

    Article  PubMed  CAS  Google Scholar 

  21. Marston, F. A. O. and Hartley, D. L. (1990) Solubilization of protein aggregates. Meth. Enzymol. 182, 264–276.

    Article  PubMed  CAS  Google Scholar 

  22. Lindwall, G., Chau, M., Gardner, S. R., and Kohlstaedt, L. A. (2000) A sparse matrix approach to the solubilization of overexpressed proteins. Protein Eng. 13, 67–71.

    Article  PubMed  CAS  Google Scholar 

  23. Walker, J. M. (1996) The Protein Protocols Handbook, 1st. ed. Humana, Totowa, NJ.

    Book  Google Scholar 

  24. Ausubel, F., Brent, R., E., K. R., Moore, a. D., Seidman, J. G., Smith, J. A., and Struhl, K. (1999) Short protocols in molecular biology. Current Protocols in Molecular Biology. 4th ed. Wiley, Hoboken, NJ.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Hewitt, L., McDonnell, J.M. (2004). Screening and Optimizing Protein Production in E. coli . In: Downing, A.K. (eds) Protein NMR Techniques. Methods in Molecular Biology™, vol 278. Humana Press. https://doi.org/10.1385/1-59259-809-9:001

Download citation

  • DOI: https://doi.org/10.1385/1-59259-809-9:001

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-246-9

  • Online ISBN: 978-1-59259-809-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics