Skip to main content

Techniques to Examine Platelet Adhesive Interactions Under Flow

  • Protocol
Platelets and Megakaryocytes

Abstract

Platelet adhesion and aggregation at sites of vessel-wall injury are critical for the arrest of bleeding and for the development of vaso-occlusive thrombi at sites of atherosclerotic-plaque rupture. These adhesive interactions are critically dependent on multiple receptors on the platelet surface (GPIb/V/IX, GPVI, integrins αIIbβ3 and α2β1) and their specific ligands in the subendothelium (von Willebrand Factor, collagen) and plasma (von Willebrand Factor, fibrinogen) (1,2). In vivo, these receptor-ligand interactions are exposed to a broad range of shear stresses generated by blood flow, ranging from 20–200/s in veins to 800–10,000/s in arteries (3). In stenotic vessels, shear rates can approach 40,000/s. The development of in vitro methodologies mimicking physiological and pathophysiological flow conditions has significantly improved our understanding of the role of shear in regulating platelet functional responses. In general, the effects of shear stress have been studied with platelets in suspension using rotational devices such as the Couette or cone-plate viscometer. Alternatively, the effects of shear on platelets have been evaluated in a laminar-flow device such as the tubular, annular, or parallel-plate flow chamber. Rotational viscometers are ideal for the examination of shear effects on platelet adhesive interactions in the absence of platelet-surface interactions (i.e., platelets in suspension). Such studies are important in determining the mechanisms of platelet activation occurring in areas of vascular stenosis where shear rates are elevated well above physiological levels. Thrombus formation, however, does not generally occur with platelets in suspension but rather involves the progressive accrual of platelets onto vascular subendothelium and subsequently onto immobilized platelets. As such, the in vitro investigation of platelet function under conditions of physiological and pathological shear has been greatly facilitated by laminar flow devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Savage, B., Almus-Jacobs, F., and Ruggeri, Z. M. (1998) Specific synergy of multiple substrate-receptor interactions in platelet thrombus formation under flow. Cell 94, 657–666.

    Article  PubMed  CAS  Google Scholar 

  2. Dopheide, S. M., Yap, C. L., and Jackson, S. P. (2001) Dynamic aspects of platelet adhesion under flow. J. Exp. Pharm. Phys. 28, 355–363.

    Article  CAS  Google Scholar 

  3. Kroll, M. H., Hellums, D., McIntire, L. V., Schafer, A. I., and Moake, J. L. (1996) Platelets and shear stress. Blood 88, 1525–1541.

    PubMed  CAS  Google Scholar 

  4. Savage, B., Saldivar, E., and Ruggeri, Z. M. (1996) Initiation of platelet adhesion by arrest onto fibrinogen or translocation on von Willebrand factor. Cell 84, 289–297.

    Article  PubMed  CAS  Google Scholar 

  5. Alevriadou, B. R., Moake, J. L., Turner, N. A., Ruggeri, Z. M., Folie, B. J., Phillips, M. D., et al. (1993) Real-time analysis of shear-dependent thrombus formation and its blockade by inhibitors of von Willebrand factor binding to platelets. Blood 81, 1263–1276.

    PubMed  CAS  Google Scholar 

  6. Ruggeri, Z. M., Dent, J. A., and Saldivar, E. (1999) Contribution of distinct adhesive interactions to platelet aggregation in flowing blood. Blood 94, 172–178.

    PubMed  CAS  Google Scholar 

  7. Kulkarni, S., Dopheide, S. M., Yap, C. L., Heel, K. A., Harper, I. S., and Jackson, S. P. (2000) A revised model of platelet aggregation. J. Clin. Invest. 105, 783–791.

    Article  PubMed  CAS  Google Scholar 

  8. Baumgartner, H. R., Stemerman, M. B., and Spaet, T. H. (1971) Adhesion of blood platelets to subendothelial surface: distinct from adhesion to collagen. Experientia 27, 283–285.

    Article  PubMed  CAS  Google Scholar 

  9. Baumgartner, H. R. and Haudenschild, C. (1972) Adhesion of platelets to subendothelium. Ann NY Acad. Sci. 201, 22–36.

    Article  PubMed  CAS  Google Scholar 

  10. Montgomery, R. R. and Zimmerman, T. S. (1978) von Willebrand’s disease antigen II. A new plasma antigen deficient in severe von Willebrand’s disease. J. Clin. Invest. 61, 1498–1507.

    Article  PubMed  CAS  Google Scholar 

  11. Moake, J. L., Turner, N. A., Stathopoulos, N. A., Nolasco, L. H., and Hellums, J. D. (1986) Involvement of large plasma von Willebrand factor (vWF) multimers and unusually large vWF forms derived from endothelial cells in shear stress-induced platelet aggregation. J. Clin. Invest. 78, 1456–1461.

    Article  PubMed  CAS  Google Scholar 

  12. Moake, J. L., Turner, N. A., Stathopoulos, N. A., Nolasco, L. H., and Hellums, J. D. (1988) Shear-induced platelet aggregation can be mediated by vWF released from platelets, as well as by exogenous large or unusually large vWF multimers, requires adenosine diphosphate, and is resistant to aspirin. Blood 71, 1366–1374.

    PubMed  CAS  Google Scholar 

  13. Jakobsen, E. and Kierulf, P. (1970) A modified β-alanine precipitation procedure to prepare fibrinogen free of anti-thrombin III and plasminogen. Thromb. Res. 3, 145–149.

    Article  Google Scholar 

  14. Cazanave, J. P., Hemmendinger, S., Beretz, A., Sutter-Bay, A., and Launay, J. (1983) L’agrégation plaquettaire: outil d’investigation clinique et d’étude pharmacologique méthodologie. Ann. Biol. Clin. 41, 167–179.

    Google Scholar 

  15. Denis, C., Methia, N., Frenette, P. S., Rayburn, H., Ullmann-Cullere, M., Hynes, R. O., et al. (1998) A mouse model of severe von Willebrand disease: defects in haemostasis and thrombosis. Proc. Natl. Acad. Sci. USA 95, 9524–9529.

    Article  PubMed  CAS  Google Scholar 

  16. Baumgartner, H. R., Tschopp, T. B., and Weiss, H. J. (1977) Platelet interaction with collagen fibrils in flowing blood. II. Impaired adhesion-aggregation in bleeding disorders. A comparison with subendothelium. Thromb Haemost. 37, 17–28.

    PubMed  CAS  Google Scholar 

  17. Yap, C. L., Hughan, S. C., Cranmer, S. L., Nesbitt, W. S., Rooney, M. M., Giuliano, S., et al. (2000) Synergistic adhesive interactions and signaling mechanisms operating between platelet glycoprotein Ib/IX and integrin αIIbβ3. Studies in human platelets and transfected chinese hamster ovary cells. J. Biol. Chem. 275, 41,377–41,388.

    Article  PubMed  CAS  Google Scholar 

  18. Nesbitt, W. S., Kulkarni, S., Giuliano, S., Goncalves, I., Nesbitt, W. S., Kulkarni, S., et al. (2002) Distinct glycoprotein Ib/V/IX and integrin αIIbβ3-dependent calcium signals cooperatively regulate platelet adhesion under flow. J. Biol. Chem. 277, 2965–2972.

    Article  PubMed  CAS  Google Scholar 

  19. Dopheide, S. M., Maxwell, M. J., and Jackson, S. P. (2002) Shear-dependent tether formation during platelet translocation on von Willebrand factor. Blood 99, 159–167.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc.

About this protocol

Cite this protocol

Kulkarni, S., Nesbitt, W.S., Dopheide, S.M., Hughan, S.C., Harper, I.S., Jackson, S.P. (2004). Techniques to Examine Platelet Adhesive Interactions Under Flow. In: Gibbins, J.M., Mahaut-Smith, M.P. (eds) Platelets and Megakaryocytes. Methods In Molecular Biology™, vol 272. Humana Press. https://doi.org/10.1385/1-59259-782-3:165

Download citation

  • DOI: https://doi.org/10.1385/1-59259-782-3:165

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-101-1

  • Online ISBN: 978-1-59259-782-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics