Skip to main content

Studies of Secretion Using Permeabilized Platelets

  • Protocol
Platelets and Megakaryocytes

Part of the book series: Methods In Molecular Biology™ ((MIMB,volume 272))

Abstract

Exocytosis from the three granules of platelets (dense-core, alpha, and lysosome) is a key event in normal hemostasis. Defects in these processes lead to bleeding-time disorders, such as Hermansky-Pudlak and gray platelet syndromes (14). Conversely, hyperactive secretion causes inappropriate clot formation, leading to the occurrence of stroke or heart attack (5,6). These two examples of hypo- and hyperactive platelets underline the need to understand the molecular mechanisms that are required for the platelet-release reaction. Recent advances by several groups have elucidated at least some of the proteins required for platelet exocytosis. Soluble NSF attachment protein receptor (SNARE) proteins mediate platelet granule-plasma membrane fusion (reviewed in 79). These integral membrane proteins form heterotrimeric (or heterotetrameric) complexes that span the two bilayers of a membrane fusion junction (reviewed in 10,11). Proteins of the t-SNARE class (target membrane SNAREs), such as syntaxin 2 and SNAP-23, have been shown to be required for all three granule-release events (1215). Syntaxin 4, however, participates only in alpha-granule and lysosome release (1214). v-SNAREs (vesicle SNAREs), such as VAMP-3/hceb and VAMP-8/endobrevin, have been shown to be present in platelets (16,17) and have been implicated in alpha-granule and dense-core exocytosis (17,18). With the establishment of the SNAREs as the basic membrane fusion machinery for granule release, the focus now turns to SNARE regulatory molecules that control how the t- and v-SNAREs interact with each other. Molecules such as Munc18, DOC2, Munc13, Rab, and members of the synaptophysin/pantophysin families are present in platelets (T. W. Rutledge and S. W. Whiteheart, unpublished observations; T. D. Schraw and A. M. Bernstein, personal communications; 1921) and may hold the key to the distinct regulation of each of the three platelet-secretion events.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Huizing, M., Anikster, Y., and Gahl, W. A. (2001) Hermansky-Pudlak syndrome and Chediak-Higashi syndrome: Disorders of vesicle formation and trafficking. Thromb. Haemost. 86, 233–245.

    PubMed  CAS  Google Scholar 

  2. Huizing, M., Anikster, Y., and Gahl, W. A. (2000) Hermansky-Pudlak syndrome and related disorders of organelle formation. Traffic 1, 823–835.

    Article  PubMed  CAS  Google Scholar 

  3. Rendu, F. and Brohard-Bohn, B. (2001) The platelet release reaction: Granules’ constituents, secretion and functions. Platelets 12, 261–273.

    Article  PubMed  CAS  Google Scholar 

  4. Smith, M. P., Cramer, E. M., and Savidge, G. F. (1997) Megakaryocytes and platelets in alpha-granule disorders. Baillieres Clin. Haematol. 10, 125–148.

    Article  PubMed  CAS  Google Scholar 

  5. Islim, I. F., Bareford, D., Ebanks, M., and Beevers, D. G. (1995) The role of platelets in essential hypertension. Blood Press. 4, 199–214.

    Article  PubMed  CAS  Google Scholar 

  6. Andrioli, G., Ortolani, R., Fontana, L., Gaino, S., Bellavite, P., Lechi, C., et al. (1996) Study of platelet adhesion in patients with uncomplicated hypertension. J. Hypertens. 14, 1215–1221.

    Article  PubMed  CAS  Google Scholar 

  7. Reed, G. L., Fitzgerald, M. L., and Polgar, J. (2000) Molecular mechanisms of platelet exocytosis: Insights into the “secrete” life of thrombocytes. Blood 96, 3334–3342.

    PubMed  CAS  Google Scholar 

  8. Furie, B., Furie, B. C., and Flaumenhaft, R. (2001) A journey with platelet P-selectin: The molecular basis of granule secretion, signaling and cell adhesion. Thromb. Haemost. 86, 214–221.

    PubMed  CAS  Google Scholar 

  9. Yoshioka, A., Horiuchi, H., Shirakawa, R., Nishioka, H., Tabuchi, A., Higashi, T., et al. (2001) Molecular dissection of alpha-and dense-core granule secretion of platelets. Ann. N.Y. Acad. Sci. 947, 403–406.

    Article  PubMed  CAS  Google Scholar 

  10. Hay, J. C. and Scheller, R. H. (1997) SNAREs and NSF in targeted membrane fusion. Curr. Opin. Cell Biol. 9, 505–512.

    Article  PubMed  CAS  Google Scholar 

  11. Jahn, R. and Sudhof, T. C. (1999) Membrane fusion and exocytosis. Annu. Rev. Biochem. 68, 863–911.

    Article  PubMed  CAS  Google Scholar 

  12. Flaumenhaft, R., Croce, K., Chen, E., Furie, B., and Furie, B. C. (1999) Proteins of the exocytotic core complex mediate platelet alpha-granule secretion. Roles of vesicle-associated membrane protein, SNAP-23, and syntaxin 4. J. Biol. Chem. 274, 2492–501.

    Article  PubMed  CAS  Google Scholar 

  13. Chen, D., Lemons, P. P., Schraw, T., and Whiteheart, S. W. (2000) Molecular mechanisms of platelet exocytosis: Role of SNAP-23 and syntaxin 2 and 4 in lysosome release. Blood 96, 1782–1788.

    PubMed  CAS  Google Scholar 

  14. Lemons, P. P., Chen, D., and Whiteheart, S. W. (2000) Molecular mechanisms of platelet exocytosis: Requirements for alpha-granule release. Biochem. Biophys. Res. Commun. 267, 875–880.

    Article  PubMed  CAS  Google Scholar 

  15. Chen, D., Bernstein, A. M., Lemons, P. P., and Whiteheart, S. W. (2000) Molecular mechanisms of platelet exocytosis: Role of SNAP-23 and syntaxin2 in dense core granule release. Blood 95, 921–929.

    PubMed  CAS  Google Scholar 

  16. Bernstein, A. M. and Whiteheart, S. W. (1999) Identification of a cellubrevin/vesicle associated membrane protein 3 homologue in human platelets. Blood 93, 571–579

    PubMed  CAS  Google Scholar 

  17. Polgar, J., Chung, S. H., and Reed, G. L. (2002) Vesicle-associated membrane protein 3 (VAMP-3) and VAMP-8 are present in human platelets and are required for granule secretion. Blood 100, 1081–1083.

    Article  PubMed  CAS  Google Scholar 

  18. Feng, D., Crane, K., Rozenvayn, N., Dvorak, A. M., and Flaumenhaft, R. (2002) Subcellular distribution of 3 functional platelet SNARE proteins: Human cellubrevin, SNAP-23, and syntaxin 2. Blood 99, 4006–4014.

    Article  PubMed  CAS  Google Scholar 

  19. Fitzgerald, M. L. and Reed, G. L. (1999) Rab6 is phosphorylated in thrombin-activated platelets by a protein kinase C-dependent mechanism: Effects on GTP/GDP binding and cellular distribution. Biochem. J. 342, 353–360.

    Article  PubMed  CAS  Google Scholar 

  20. Shirakawa, R., Yoshioka, A., Horiuchi, H., Nishioka, H., Tabuchi, A., and Kita, T. (2000) Small GTPase Rab4 regulates Ca2+-induced alpha-granule secretion in platelets. J. Biol. Chem. 275, 33,844–33,849.

    Article  PubMed  CAS  Google Scholar 

  21. Reed, G. L., Houng, A. K., and Fitzgerald, M. L. (1999) Human platelets contain SNARE proteins and a Sec1p homologue that interacts with syntaxin 4 and is phosphorylated after thrombin activation: Implications for platelet secretion. Blood 93, 2617–2626.

    PubMed  CAS  Google Scholar 

  22. Coorssen, J. R. and Haslam, R. J. (1993) GTPγS and phorbol ester act synergistically to stimulate both Ca2+-independent secretion and phospholipase D activity in permeabilized human platelets. Inhibition by BAPTA and analogues. FEBS Lett. 316, 170–174.

    Article  PubMed  CAS  Google Scholar 

  23. Sloan, D. C. and Haslam, R. J. (1997) Protein kinase C-dependent and Ca2+-dependent mechanisms of secretion from Streptolysin O-permeabilized platelets: Effects of leakage of cytosolic proteins. Biochem. J. 328, 13–21.

    PubMed  CAS  Google Scholar 

  24. Marcu, M. G., Zhang, L., Nau-Staudt, K., and Trifaro, J. M. (1996) Recombinant scinderin, an F-actin severing protein, increases calcium-induced release of serotonin from permeabilized platelets, an effect blocked by two scinderin-derived actin-binding peptides and phosphatidylinositol 4,5-bisphosphate. Blood 87, 20–24.

    PubMed  CAS  Google Scholar 

  25. Elzagallaai, A., Rose, S. D., Brandan, N. C., and Trifaro, J. M. (2001) Myristoylated alanine-rich C kinase substrate phosphorylation is involved in thrombin-induced serotonin release from platelets. Br. J. Haematol. 112, 593–602.

    Article  PubMed  CAS  Google Scholar 

  26. Authi, K. S., Rao, G. H., Evenden, B. J., and Crawford, N. (1988) Action of guanosine 5′-[beta-thio]diphosphate on thrombin-induced activation and Ca2+ mobilization in saponin-permeabilized and intact human platelets. Biochem. J. 255, 885–893.

    PubMed  CAS  Google Scholar 

  27. Arvand, M., Bhakdi, S., Dahlback, B., and Preissner, K. T. (1990) Staphylococcus aureus alpha-toxin attack on human platelets promotes assembly of the prothrombinase complex. J. Biol. Chem. 265, 14,377–14,381.

    PubMed  CAS  Google Scholar 

  28. Flaumenhaft, R., Furie, B., and Furie, B. C. (1999) Alpha-granule secretion from alpha-toxin permeabilized, MgATP-exposed platelets is induced independently by H+ and Ca2+. J. Cell. Physiol. 179, 1–10.

    Article  PubMed  CAS  Google Scholar 

  29. Knight, D. E. and Scrutton, M. C. (1993) Electropermeabilized platelets: A preparation to study exocytosis. Methods Enzymol. 221, 123–138.

    Article  PubMed  CAS  Google Scholar 

  30. Ahnert-Hilger, G., Mach, W., Föhr, K. J., and Gratzl, M. (1989) Poration by α-toxin and Streptolysin-O: An approach to analyze intracellular process. Methods in Cell Biol. 31, 63–90.

    Article  CAS  Google Scholar 

  31. Rutledge, T. W. and Whiteheart, S. W. (2002) SNAP-23 is a target for calpain cleavage in activated platelets. J. Biol. Chem. 277, 37,009–37,015.

    Article  PubMed  CAS  Google Scholar 

  32. Holmsen, H. and Dangelmaier, C. A. (1989) Measurement of secretion of serotonin. Methods Enzymol. 169, 205–210.

    Article  PubMed  CAS  Google Scholar 

  33. Harrison, P. and Cramer, E. M. (1993) Platelet alpha-granules. Blood Rev. 7, 52–62.

    Article  PubMed  CAS  Google Scholar 

  34. Fasshauer, D., Antonin, W., Margittai, M., Pabst, S., and Jahn, R. (1999) Mixed and non-cognate SNARE complexes. Characterization of assembly and biophysical properties. J. Biol. Chem. 274, 15,440–15,446.

    Article  PubMed  CAS  Google Scholar 

  35. Yang, B., Gonzalez, L., Jr., Prekeris, R., Steegmaier, M., Advani, R. J., and Scheller, R. H. (1999) SNARE interactions are not selective. Implications for membrane fusion specificity. J. Biol. Chem. 274, 5649–5653.

    Article  PubMed  CAS  Google Scholar 

  36. Bock, J. B., Matern, H. T., Peden, A. A., and Scheller, R. H. (2001) A genomic perspective on membrane compartment organization. Nature 409, 839–841.

    Article  PubMed  CAS  Google Scholar 

  37. Guo, Z., Turner, C., and Castle, D. (1998) Relocation of the t-SNARE SNAP-23 from lamellipodia-like cell surface projections regulates compound exocytosis in mast cells. Cell 94, 537–548.

    Article  PubMed  CAS  Google Scholar 

  38. Polgar, J. and Reed, G. L. (1999) A critical role for N-ethylmaleimide-sensitive fusion protein (NSF) in platelet granule secretion. Blood 94, 1313–1318.

    PubMed  CAS  Google Scholar 

  39. DeBello, W. M., O’Connor, V., Dresbach, T., Whiteheart, S. W., Wang, S. S., Schweizer, F. E., et al. (1995) SNAP-mediated protein-protein interactions essential for neurotransmitter release. Nature 373, 626–630.

    Article  PubMed  CAS  Google Scholar 

  40. Schweizer, F. E., Dresbach, T., DeBello, W. M., O’Connor, V., Augustine, G. J., and Betz, H. (1998) Regulation of neurotransmitter release kinetics by NSF. Science 279, 1203–1206.

    Article  PubMed  CAS  Google Scholar 

  41. Dresbach, T., Burns, M. E., O’Connor, V., DeBello, W. M., Betz, H., and Augustine, G. J. (1998) A neuronal Sec1 homolog regulates neurotransmitter release at the squid giant synapse. J. Neurosci. 18, 2923–2932.

    PubMed  CAS  Google Scholar 

  42. Greenberg-Sepersky, S. M. and Simons, E. R. (1985) Release of a fluorescent probe as an indicator of lysosomal granule secretion by thrombin-stimulated human platelets. Anal. Biochem. 147, 57–62.

    Article  PubMed  CAS  Google Scholar 

  43. Bhakdi, S., Roth, M., Sziegoleit, A., and Tranum-Jensen, J. (1984) Isolation and identification of two hemolytic forms of streptolysin-O. Infect. Immun. 46, 394–400.

    PubMed  CAS  Google Scholar 

  44. Patton, C., Thompson, S., and Epel, D. (2004) Some precautions in using chelators to buffer metals in biological solutions. Cell Calcium. 35, 427–431.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc.

About this protocol

Cite this protocol

Rutledge, T.W., Whiteheart, S.W. (2004). Studies of Secretion Using Permeabilized Platelets. In: Gibbins, J.M., Mahaut-Smith, M.P. (eds) Platelets and Megakaryocytes. Methods In Molecular Biology™, vol 272. Humana Press. https://doi.org/10.1385/1-59259-782-3:109

Download citation

  • DOI: https://doi.org/10.1385/1-59259-782-3:109

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-101-1

  • Online ISBN: 978-1-59259-782-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics