Skip to main content

Host Cell Compatibility in Protein Expression

  • Protocol
Recombinant Gene Expression

Part of the book series: Methods in Molecular Biology ((MIMB,volume 267))

Abstract

The expression of cloned genes in prokaryotic or eukaryotic host cells provides the means not only for the study of gene function but also for the production of substantial amounts of protein and nonprotein molecules for commercial and investigational use. In the case of proteins, strategies for determining the most appropriate vector-host combination for the expression of an exogenous gene depend on a diverse range of factors that relate ultimately to the properties of the gene and its product. The approach used in the downstream purification of the product is another factor that impinges on this selection. However, among the most important considerations in the choice of vector and host in ensuring the maximal amount of expression is the compatibility of the host cells to translate the RNA transcript, to ensure the proper folding of the product, and to sustain the protein in the intact and functional state.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baneyx, F. (1999) Recombinant protein expression in Escherichia coli. Curr. Opin. Biotechnol. 10, 411–421.

    Article  PubMed  CAS  Google Scholar 

  2. Balbás, P. (2001) Understanding the art of producing protein and nonprotein molecules in Escherichia coli. Mol. Biotechnol. 19, 251–267.

    Article  PubMed  Google Scholar 

  3. Swartz, J. R. (2001) Advances in Escherichia coli production of therapeutic proteins. Curr. Opin. Biotechnol. 12, 195–201.

    Article  PubMed  CAS  Google Scholar 

  4. Jonasson, P., Lijeqvist, S., Nygren, P., and Ståhl, S. (2002) Genetic design for facilitated production and recovery of recombinant proteins in Escherichia coli. Biotechnol. Appl. Biochem. 35, 91–105.

    Article  PubMed  CAS  Google Scholar 

  5. Kaufman, R. J. (2000) Overview of vector design for mammalian gene expression. Mol. Biotechnol. 16, 151–160.

    Article  PubMed  CAS  Google Scholar 

  6. de Boer, H. A. and Kastelein, R. A. (1986) Biased codon usage: an exploration of its role in optimization of translation, in Maximizing Gene Expression (Reznikoff, W. and Gold, L., eds.), Buttersworth, Boston.

    Google Scholar 

  7. Akashi, H. (2001) Gene expression and molecular evolution. Curr. Opin. Genet. Dev. 11, 660–666.

    Article  PubMed  CAS  Google Scholar 

  8. Kane J. F. (1995) Effects of rare codon clusters on high-level expression of heterologous proteins in Escherichia coli. Curr. Opin. Biotechnol. 6, 494–500.

    Article  PubMed  CAS  Google Scholar 

  9. Hannig, G. and Makrides, S. C. (1998) Strategies for optimizing heterologous protein expression in Escherichia coli. Trends in Biotechn. 16, 54–60.

    Article  CAS  Google Scholar 

  10. Prinz, W. A., Aslund, F., Holmgren, A., and Beckwith, J. (1997) The role of the thioredoxin and glutaredoxin pathways in reducing protein disulfide bonds in the Escherichia coli cytoplasm. J. Biol. Chem. 272, 15661–15667.

    Article  PubMed  CAS  Google Scholar 

  11. LaVallie, E. R., DiBlasio-Smith, E. A., Collins-Racie, L. A., Lu, Z. and McCoy, J. M. (2003). Thioredoxin and related proteins as multifunctional fusion tags for soluble expression in E. coli. Methods Mol. Biol. 205, 119–140.

    PubMed  CAS  Google Scholar 

  12. Lobel, L., Pollak, S., Klein, J., and Lustbader, J.W. (2001) High-level bacterial expression of a natively folded, soluble extracellular domain fusion protein of the human luteinizing hormone/chorionic gonadotropin receptor in the cytoplasm of Escherichia coli. Endocrine 14, 205–212.

    Article  PubMed  CAS  Google Scholar 

  13. Lobel, L., Pollak, S., Lustbader, B., Klein, J., and Lustbader, J.W. (2002) Bacterial expression of a natively folded extracellular domain fusion protein of the hFSH receptor in the cytoplasm of Escherichia coli. Protein Express. Purif. 25, 124–133.

    Article  CAS  Google Scholar 

  14. Wilkinson, D. L. and Harrison, R. G. (1991) Predicting the solubility of recombinant proteins in Escherichia coli. Biotechnology 9, 443–448.

    Article  PubMed  CAS  Google Scholar 

  15. Davis, G. D., Elisee, C., Newham, D. M. and Harrison, R. G. (1999) New fusion protein systems designed to give soluble expression in Escherichia coli. Biotechnol Bioeng. 65, 382–388.

    Article  PubMed  CAS  Google Scholar 

  16. Romanos, M. A., Scorer, C. A. and Clare, J. J. (1992) Foreign gene expression in yeast: a review. Yeast 8, 423–488.

    Article  PubMed  CAS  Google Scholar 

  17. Sudbery, P. E. (1996) The expression of recombinant proteins in yeasts. Curr. Opin. Biotechnol. 7, 517–524.

    Article  PubMed  CAS  Google Scholar 

  18. Ostergaard, S., Olsson, L., and Nielsen, J. (2000) Metabolic engineering of Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 64, 34–50.

    Article  PubMed  CAS  Google Scholar 

  19. Giga-Hama, Y. and Kumagai, H. (1999) Expression system for foreign genes using the fission yeast Schizosaccharomyces pombe. Biotechnol. Appl. Biochem. 30, 235–244.

    PubMed  CAS  Google Scholar 

  20. Luckow, V. A. (1993) Baculovirus systems for the expression of human gene products. Curr. Opin. Biotechnol. 4, 564–572.

    Article  PubMed  CAS  Google Scholar 

  21. Jarvis, D. L. and Guarino, L. A. (1995) Continuous foreign gene expression in transformed lepidopteran insect cells. Methods Mol. Biol. 39, 187–202.

    PubMed  CAS  Google Scholar 

  22. McCarroll, L. and King, L. A. (1997) Stable insect cell cultures for recombinant protein production. Curr. Opin. Biotechnol. 8, 590–594.

    Article  PubMed  CAS  Google Scholar 

  23. Jarvis, D. L. and Finn, E. E. (1995) Biochemical analysis of the N-glycosylation pathway in baculovirus-infected lepidopteran insect cells. Virology 212, 500–511.

    Article  PubMed  CAS  Google Scholar 

  24. Jarvis, D. L., Howe, D. and Aumiller, J. J. (2001) Novel baculovirus expression vectors that provide sialylation of recombinant glycoproteins in lepidopteran insect cells. J. Virol. 75, 6223–6227.

    Article  PubMed  CAS  Google Scholar 

  25. Condreay, J. P., Witherspoon, S. M., Clay, W. C. and Kost, T. A. (1997) Transient and stable gene expression in mammalian cells transduced with a recombinant baculovirus vector. Proc. Natl. Acad. Sci. USA 96, 127–132.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Greene, J.J. (2004). Host Cell Compatibility in Protein Expression. In: Balbás, P., Lorence, A. (eds) Recombinant Gene Expression. Methods in Molecular Biology, vol 267. Humana Press. https://doi.org/10.1385/1-59259-774-2:003

Download citation

  • DOI: https://doi.org/10.1385/1-59259-774-2:003

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-262-9

  • Online ISBN: 978-1-59259-774-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics