Skip to main content

Intracellular Multiplication of Legionella Species and the Influence of Amoebae on Their Intracellular Growth in Human Monocytes

Mono Mac 6 Cells and Acanthamoeba castellanii as Suitable In Vitro Models

  • Protocol
Public Health Microbiology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 268))

Abstract

Legionellae are important etiological agents of pneumonia. Legionella pneumophila (predominantly serogroup 1) is detected in most cases of legionellosis; other species only occasionally cause infections, predominantly in immunocompromized patients (14). Aquiferous technical systems are the primary source of infection (air-conditioning systems, refrigerators, showers, whirlpools, springs, taps, moisturizing equipment, medical nebulizers, and swimming pools). Legionellae are present in the water in these systems, within the amoebae, flagellates, and ciliates in which they replicate (2,5,6). After inhalation of contaminated aerosols, the bacteria multiply intracellularly within alveolar macrophages (7). The ability to multiply within monocytic host cells is usually considered to correspond to pathogenicity (813). The mechanisms of intracellular replication have been only partially characterized (recently summarized in ref. 14).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brenner, D. J. (1987) Classification of the legionellae. Semin. Respir. Infect. 2, 190–205.

    PubMed  CAS  Google Scholar 

  2. Davis, G. S. and Winn, W. C. (1987) Legionnaire’s disease: respiratory infection caused by Legionella bacteria. Clin. Chest Med. 8, 419–439.

    PubMed  CAS  Google Scholar 

  3. Fang, G. D., Yu, V. L., and Vickers, R. M. (1989) Disease due to the Legionellaceae (other than Legionella pneumophila). Medicine 68, 116–132.

    Article  PubMed  CAS  Google Scholar 

  4. Nguyen, H. M., Stout, J. E., and Yu, V. L. (1991) Legionellosis. Infect. Dis. Clin. North Am. 5, 561–584.

    PubMed  CAS  Google Scholar 

  5. Hart, C. A. and Makin, T. (1991): Legionella in hospitals: a review. J. Hosp. Infect. 18(Suppl A), 481–489.

    Article  PubMed  Google Scholar 

  6. Winn, W. C. (1988) Legionnaires disease: historical perspective. Clin. Microbiol. Rev. 1, 60–81.

    PubMed  Google Scholar 

  7. Horwitz, M. A. (1980) The Legionnaires’ disease bacterium (Legionella pneumophila) multiplies intracellularly in human monocytes. J. Clin. Invest. 66, 441–450.

    Article  PubMed  CAS  Google Scholar 

  8. Ciancotto, N. P., Eisenstein, B. I., Mody, C. H., Toews, G. B., and Engleberg, N. C. (1989) A Legionella pneumophila gene encoding a species-specific surface protein potentiates initiation of intracellular infection. Infect. Immun. 57, 1255–1262.

    Google Scholar 

  9. Dowling, J. N., Saha, A. K., and Glew, R. H. (1992) Virulence factors of the family Legionellaceae. Microbiol. Rev. 56, 32–60.

    PubMed  CAS  Google Scholar 

  10. Horwitz, M. A. (1987) Characterization of avirulent mutant Legionella pneumophila that survive but do not multiply within human monocytes. J. Exp. Med. 166, 1310–1328.

    Article  PubMed  CAS  Google Scholar 

  11. Pearlman, E., Jiwa, A. H., Engleberg, N. C., and Eisenstein, B. I. (1988) Growth of Legionella pneumophila in a human macrophage-like (U 937) cell line. Microb. Pathogenesis 5, 87–95.

    Article  CAS  Google Scholar 

  12. Yamamoto, Y., Klein, T. W., Newton, C. A., Widen, R., and Friedman, H. (1988) Growth of Legionella pneumophila in thioglycolate-elicited peritoneal macrophages from A/J mice. Infect. Immun. 56, 70–375.

    Google Scholar 

  13. Yoshida, S. and Mizuguchi, Y (1986) Multiplication of Legionella pneumophila Philadelphia 1 in cultured peritoneal macrophages and its correlation to susceptibility of animals. Can. J. Microbiol. 32, 438–442.

    Article  PubMed  CAS  Google Scholar 

  14. Swanson, M. S. and Hammer B. K. (2000) Legionella pneumophila pathogenesis: a fateful journey from amoebae to macrophages. Annu. Rev. Microbiol. 54, 567–613.

    Article  PubMed  CAS  Google Scholar 

  15. Ziegler-Heitbrock, H. W. L., Thiel, E., Fütterer, A., Herzof, V., Wirtz, A., and Riethmüller, G. (1988) Establishment of a human cell line (Mono Mac 6) with characteristics of mature monocytes. Int. J. Cancer 41, 456–461.

    Article  PubMed  CAS  Google Scholar 

  16. Marra, A., Horwitz, M. A., and Shuman, H. A. (1990) The HL-60 model for the interaction of human macrophages with the Legionnaires’ disease bacterium. J. Immunol. 144, 2738–2744.

    PubMed  CAS  Google Scholar 

  17. Pearlman, E., Jiwa, A. H., Engleberg, N. C., and Eisenstein, B. I. (1988) Growth of Legionella pneumophila in a human macrophage-like (U 937) cell line. Microb. Pathogen. 5, 87–95.

    Article  CAS  Google Scholar 

  18. Watanabe, M., Shimamoto, Y., Yoshida, S., et al. (1993) Intracellular multiplication of Legionella pneumophila in HL-60 cells differentiated by 1,25-dihydroxyvitamin D3 and the effect of interferon γ. J. Leukocyte Biol. 54, 40–46.

    PubMed  CAS  Google Scholar 

  19. Neumeister, B., Schöniger, S., Faigle, M., Eichner, M., and Dietz, K. (1997) Multiplication of different Legionella species in Mono Mac 6 cells and in Acanthamoeba castellani. Appl. Environ. Microbiol. 63, 1219–1224.

    PubMed  CAS  Google Scholar 

  20. Barrow, E. L. W., Winchester, G. A., Staas, J. K., Quenelle, D. C., and Barrow, W. W. (1998) Use of microsphere technology for targeted delivery of rifampin to Mycobacterium tuberculosis-infected macrophages. Antimicrob. Agents Chemother. 42, 2682–22689

    PubMed  CAS  Google Scholar 

  21. Heinemann, M., Susa, M., Simnacher, U., Marre, R., and Essig, A. (1996) Growth of Chlamydia pneumoniae induces cytokine production and expression of CD14 in a human monocytic cell line. Infect. Immun. 64, 4872–4875.

    PubMed  CAS  Google Scholar 

  22. Michel, R. and Hauröder, B. (1997) Isolation of an Acanthamoeba strain with intracellular Burkholderia pickettii infection. Zentralbl. Bakt. 285, 541–557.

    CAS  Google Scholar 

  23. Landers, P., Kerr, K. G., Rowbotham, T. J., et al. (2000) Survival and growth of Burkholderia cepacia within the free-living amoeba Acanthamoeba polyphaga. Eur. J. Clin. Microbiol. Infect. Dis. 19, 121–123.

    Article  PubMed  CAS  Google Scholar 

  24. Inglis, T. J. J., Rigby, P., Robertson, T. A., Dutton, N. S., Henderson, M., and Chang, B. J. (2000) Interaction between Burkholderia pseudomallei and Acanthamoeba species results in coiling phagocytosis, endamebic bacterial survival, and escape. Infect. Immun. 68, 1681–1686.

    Article  PubMed  CAS  Google Scholar 

  25. Essig, A., Heinemann, M., Simnacher, U., and Marre, R. (1997) Infection of Acanthamoeba castellanii by Chlamydia pneumoniae. Appl. Environ. Microbiol. 63, 1396–1399.

    PubMed  CAS  Google Scholar 

  26. Ly, T. M. C. and Müller, H. E. (1990) Ingested Listeria monocytogenes survive and multiply in protozoa. J. Med. Microbiol. 33, 51–54.

    Article  PubMed  CAS  Google Scholar 

  27. Cirillo, J. D., Falkow, S., Tompkins, L. S., and Bermudez, L. E. (1997) Interaction of Mycobacterium avium with environmental amoebae enhances virulence. Infect. Immun. 65, 3759–3767.

    PubMed  CAS  Google Scholar 

  28. Steinert, M., Birkness, K., White, E., Fields, B., and Quinn, F. (1998) Mycobacterium avium bacilli grow saprozoically in coculture with Acanthamoeba polyphaga and survive within cyst walls. Appl. Environ. Microbiol. 64, 2256–2261.

    PubMed  CAS  Google Scholar 

  29. Michel, R., Burghardt, H., and Bergmann, H. (1995) Acanthamoeba, naturally intracellularly infected with Pseudomonas aeruginosa, after their isolation from a microbiologically contaminated drinking water system in a hospital. Zentralbl. Hyg. Umweltmed. 196, 532–544.

    PubMed  CAS  Google Scholar 

  30. Thom, S., Warhurst, D., and Drasar, B. S. (1992) Association of Vibrio cholerae with fresh water amoebae. J. Med. Microbiol. 36, 303–306.

    Article  PubMed  CAS  Google Scholar 

  31. Barker, J., Humphrey, T. J., and Brown, M. W. (1999) Survival of Escherichia coli 0157 in a soil protozoan: implications for disease. FEMS Microbiol. Lett. 173, 291–295.

    Article  PubMed  CAS  Google Scholar 

  32. Fritsche, T. R., Horn, M., Seyedirashti, S., Gautom, R. K., Schleifer, K. H., and Wagner, M. (1999) In situ detection of novel bacterial endosymbionts of Acanthamoeba spp. phylogenetically related to members of the order Rickettsiales. Appl. Environ. Microbiol. 65, 206–212.

    PubMed  CAS  Google Scholar 

  33. Rowbotham, T.J. (1980) Preliminary report on the pathogenicity of Legionella pneumophila for freshwater and soil amoebae. J. Clin. Pathol. 33, 1179–1183.

    Article  PubMed  CAS  Google Scholar 

  34. Barbaree, J. M., Fields, B. S., Feeley, J. C., Gorman, G. W., and Martin, W. T. (1986) Isolation of protozoa from water associated with a legionellosis outbreak and demonstration of intracellular multiplication of Legionella pneumophila. Appl. Environ. Microbiol. 51, 422–424.

    PubMed  CAS  Google Scholar 

  35. Breiman, R.F., Fields, B.S., Sanden, G.N., Volmer, L.J., Meier, A., and Spika, J.S. (1990) Association of shower use with Legionnaires’ disease. JAMA 263, 2924–2926.

    Article  PubMed  CAS  Google Scholar 

  36. Fields, B. S., Sanden, G. N., Barbaree, J. M., et al. (1989) Intracellular multiplication of Legionella pneumophila in amoebae isolated from hospital hot water tanks. Curr. Microbiol. 16, 131–137

    Article  Google Scholar 

  37. Fields, B. S., Nerad, T. A., Sawyer, T. K., et al. (1990) Characterization of an axenic strain of Hartmannella vermiformis obtained from an investigation of nosocomial legionellosis. J. Protozool. 37, 581–583.

    PubMed  CAS  Google Scholar 

  38. Nahapetian, K., Challemel, O., Beurtin, D., Dubrou, S., Gounon, P., and Squinazi, F. (1991) The intracellular multiplication of Legionella pneumophila in protozoa from hospital plumbing systems. Res. Microbiol. 142, 677–685.

    Article  PubMed  CAS  Google Scholar 

  39. Rowbotham, T. J. (1983) Isolation of Legionella pneumophila from clinical specimens via amoebae, and the interaction of those and other isolates with amoebae. J. Clin. Pathol. 36, 978–986.

    Article  PubMed  CAS  Google Scholar 

  40. Sanden, G. N., Morrill, W. E., Fields, B. S., Breiman, R. F., and Barbaree, J. M. (1992) Incubation of water samples containing amoebae improves detection of legionellae by the culture method. Appl. Environ. Microbiol. 58, 2001–2004.

    PubMed  CAS  Google Scholar 

  41. Wadowsky, R. M., Butler, L. J., Cook, M. K., et al. (1988) Growth supporting activity for Legionella pneumophila in tap water cultures and implication of hartmannellid amoebae as growth factors. Appl. Environ. Microbiol. 54, 2677–2682.

    PubMed  CAS  Google Scholar 

  42. Cirillo, J. D., Falkow, S., and Tompkins, L. S. (1994) Growth of Legionella pneumophila in Acanthamoeba castellanii enhances invasion. Infect. Immun. 62, 3254–3261.

    PubMed  CAS  Google Scholar 

  43. Abu-Kwaik, Y., Fields, B. S., and Engleberg, N. C. (1994) Protein expression by the protozoan Hartmanella vermiformis upon contact with its bacterial parasite Legionella pneumophila. Infect. Immun. 62, 1860–1866.

    PubMed  CAS  Google Scholar 

  44. Barker, J., Lambert, P. A., and Brown, M. R. (1993) Influence of intra-amoebic and other growth conditions on the surface properties of Legionella pneumophila. Infect. Immun. 61, 3503–3510.

    PubMed  CAS  Google Scholar 

  45. Barker, J., Brown, M. R., Collier, P. J., Farrell, I., and Gilbert, P. (1992) Relationship between Legionella pneumophila and Acanthamoeba polyphaga: physiological status and susceptibility to chemical inactivation. Appl. Environ. Microbiol. 58, 2420–2425.

    PubMed  CAS  Google Scholar 

  46. Barker, J., Scaife, H., and Brown, R. W. (1995) Intraphagocytic growth induces an antibiotic resistant phenotype of Legionella pneumophila. Antimicrob. Agents Chemother. 39, 2684–2688.

    PubMed  CAS  Google Scholar 

  47. O’Brien, S. J. and Bhopal, R. S. (1993) Legionnaires’ disease: the infective dose paradox. Lancet 342, 5–6.

    Article  CAS  Google Scholar 

  48. Brieland, J., McClain, M., Heath, L., et al. (1996) Coinoculation with Hartmanella vermiformis enhances replicative Legionella pneumophila infection in a murine model of Legionnaires’ disease. Infect. Immun. 64, 2449–2456.

    PubMed  CAS  Google Scholar 

  49. Brieland, J., McClain, M., Legendre, M., and Engleberg, C. (1997) Intrapulmonary Hartmanella vermiformis: a potential niche for Legionella pneumophila replication in a murine model of legionellosis. Infect. Immun. 65, 4892–4896.

    PubMed  CAS  Google Scholar 

  50. Brieland, J. K., Fantone, J. C., Remick, D. G., Legendre, M., McClain, M., and Engleberg, C. (1997) The role of Legionella pneumophila-infected Hartmanella vermiformis as an infectious particle in a murine model of Legionnaires’ disease. Infect. Immun. 65, 5330–5333.

    PubMed  CAS  Google Scholar 

  51. Neumeister, B., Reiff, G., Faigle, M., Dietz, K., and Lang, F. (2000) Influence of Acanthamoeba castellanii on intracellular growth of different Legionella species in human monocytes: establishment of an in-vitro coculture system. Appl. Environ. Microbiol. 66, 914–919.

    Article  PubMed  CAS  Google Scholar 

  52. Moffat, J. F. and Tompkins, L. S. (1992) A quantitative model of intracellular growth of Legionella pneumophila in Acanthamoeba castellanii. Infect. Immun. 60, 296–301.

    PubMed  CAS  Google Scholar 

  53. Gao, L. Y. and Abu-Kwaik, Y. (1999) Apoptosis in macrophages and alveolar epithelial cells during early stages of infection by Legionella pneumophila and its role in cytopathogenicity. Infect. Immun. 67, 862–870.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc.Totowa, NJ

About this protocol

Cite this protocol

Neumeister, B. (2004). Intracellular Multiplication of Legionella Species and the Influence of Amoebae on Their Intracellular Growth in Human Monocytes. In: Spencer, J.F.T., Ragout de Spencer, A.L. (eds) Public Health Microbiology. Methods in Molecular Biology, vol 268. Humana Press. https://doi.org/10.1385/1-59259-766-1:141

Download citation

  • DOI: https://doi.org/10.1385/1-59259-766-1:141

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-117-2

  • Online ISBN: 978-1-59259-766-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics