Skip to main content

Mapping Protein-Ligand Interactions by Hydroxyl-Radical Protein Footprinting

  • Protocol
Protein-Protein Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 261))

Abstract

Hydroxyl-radical protein footprinting is a direct method to map protein sites involved in macromolecular interactions. The first step is to radioactively end-label the protein. Using hydroxyl radicals as a peptide backbone cleavage reagent, the protein is then cleaved in the absence and presence of ligand. Cleavage products are separated by high-resolution gel electrophoresis. The digital image of the footprinting gel can be subjected to quantitative analysis to identify changes in the sensitivity of the protein to hydroxyl-radical cleavage. Molecular weight markers are electrophoresed on the same gel and hydroxyl-radical cleavage sites assigned by interpolation between the known cleavage sites of the markers. The results are presented in the form of a difference plot that show regions of the protein that change their susceptibility to cleavage while bound to a ligand.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Heyduk, E. and Heyduk, T. (1994) Mapping protein domains involved in macromolecular interactions: a novel protein footprinting approach. Biochemistry 33, 9643–9650.

    Article  PubMed  CAS  Google Scholar 

  2. Heyduk, T., Heyduk, E., Severinov, K., Tang, H., and Ebright, R. H. (1996) Determinants of RNA polymerase a subunit for interaction with β, β′, and σsubunits: hydroxyl-radical protein footprinting. Proc. Natl. Acad. Sci. USA 93, 10,162–10,166.

    Article  PubMed  CAS  Google Scholar 

  3. Heyduk, T., Baichoo, N., and Heyduk, E. (2001) Hydroxyl radical footprinting of proteins using metal ion complexes. Met. Ions. Biol. Syst. 38, 255–287.

    PubMed  CAS  Google Scholar 

  4. Loizos, N. and Darst, S.A. (1998) Mapping protein-ligand interactions by footprinting, a radical idea. Structure 6, 691–695.

    Article  PubMed  CAS  Google Scholar 

  5. Nagai, H. and Shimamoto, N. (1997) Regions of the Escherichia coli primary sigma factor σ70 that are involved in interaction with RNA polymerase core enzyme. Genes to Cells 2, 725–734.

    Article  PubMed  CAS  Google Scholar 

  6. Wang, Y., Severinov, K., Loizos, N., et al. (1997) Determinants for Escherichia coli RNA polymerase assembly within the β subunit. J. Mol. Biol. 270, 648–662.

    Article  PubMed  CAS  Google Scholar 

  7. Casaz, P. and Buck, M. (1999) Region I modifies DNA-binding domain conformation of sigma 54 within the holoenzyme. J. Mol. Biol. 285, 507–514.

    Article  PubMed  CAS  Google Scholar 

  8. Colland, F., Orsini, G., Brody, E.N., Buc, H., and Kolb, A. (1998) The bacteriophage T4 AsiA protein: a molecular switch for sigma 70-dependent promoters. Mol. Microbiol. 27, 819–829.

    Article  PubMed  CAS  Google Scholar 

  9. Loizos, N. and Darst, S.A. (1999) Mapping interactions of Escherichia coli GreB with RNA polymerase and ternary elongation complexes. J. Biol. Chem. 274, 23,378–23,386.

    Article  PubMed  CAS  Google Scholar 

  10. Mossessova, E., Gulbis, M., and Goldberg, J. (1998) Structure of the guanine nucleotide exchange factor Sec7 domain of human Arno and analysis of the interaction with ARF GTPase. Cell 92, 415–423.

    Article  PubMed  CAS  Google Scholar 

  11. Li, B.L., Langer, J.A., Schwartz, B., and Pestka, S. (1989) Creation of phosphorylation sites in proteins: construction of a phosphorylatable human interferon α. Proc. Natl. Acad. Sci. USA 86, 558–562.

    Article  PubMed  CAS  Google Scholar 

  12. Kelman, Z. and O’Donnell, M. (1995) Escherichia coli expression vectors containing a protein kinase recognition motif, His6-tag and hemagglutinin epitope. Gene 166, 177–178.

    Article  PubMed  CAS  Google Scholar 

  13. Kim, K., Rhee, S.G., and Stadtman, E.R. (1985) Nonenzymatic cleavage of proteins by Reactive oxygen species generated by dithiothreitol and iron. J. Biol. Chem. 260, 15,394–15,397.

    PubMed  CAS  Google Scholar 

  14. Schagger, H. and von Jagow, G. (1987) Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal. Biochem. 166, 368–379.

    Article  PubMed  CAS  Google Scholar 

  15. Brenowitz, M., Senear, D.F., Shea, M.A., and Ackers, G.A. (1986) Quantitative Dnase footprint titration: a method for studying protein-DNA interactions. Methods Enzymol. 130, 132–181.

    Article  PubMed  CAS  Google Scholar 

  16. Borukhov, S., Lee, J., and Goldfarb, A. (1991) Mapping of a contact for the RNA 3′ terminus in the largest subunit of RNA polymerase. J. Biol. Chem. 266, 23,932–23,935.

    PubMed  CAS  Google Scholar 

  17. Koulich, D., Nikiforov, V., and Borukhov, S. (1998) Distinct functions of N and C-terminal domains of GreA, an Escherichia coli transcript cleavage factor. J. Mol. Biol. 276, 379–389.

    Article  PubMed  CAS  Google Scholar 

  18. Nicholls, A., Sharp, K.A., and Honig, B. (1991) Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins 11, 281–296.

    Article  PubMed  CAS  Google Scholar 

  19. Baichoo, N. and Heyduk, T. (1999) DNA-induced conformational changes in cyclic AMP receptor protein: detection and mapping by a protein footprinting technique using multiple chemical proteases. J. Mol. Biol. 90, 37–48.

    Article  Google Scholar 

  20. Schwanbeck, R., Manfioletti, G., and Wisniewski, J.R. (2000) Architecture of high mobility group protein I-C.DNA complex and its perturbtion upon phosphorylation by Cdc2 kinase. J. Biol. Chem. 275, 1793–1801.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Loizos, N. (2004). Mapping Protein-Ligand Interactions by Hydroxyl-Radical Protein Footprinting. In: Fu, H. (eds) Protein-Protein Interactions. Methods in Molecular Biology, vol 261. Humana Press. https://doi.org/10.1385/1-59259-762-9:199

Download citation

  • DOI: https://doi.org/10.1385/1-59259-762-9:199

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-120-2

  • Online ISBN: 978-1-59259-762-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics