Skip to main content

Structural Basis of Protein-Protein Interactions

  • Protocol
Protein-Protein Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 261))

Abstract

Regulated interactions between proteins govern signaling pathways within and between cells. Although it is possible to derive some general principles of protein-protein recognition from experimentally determined structures, recent structural studies on protein complexes formed during signal transduction illustrate the remarkable diversity of interactions, both in terms of interfacial size and nature. There are two broad classes of complexes: “domain-domain,” in which both components comprise prefolded structural units, and “domain-peptide,” in which one component is a short motif that is unstructured in the absence of its binding partner. Signaling complexes often involve multidomain proteins whose multifaceted binding functions are regulated by intramolecular domain interactions. The structural basis of regulation, via steric and allosteric mechanisms, is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wodak, S. J. and Janin, J. (2003) Structural basis of macromolecular recognition. Adv. Protein Chem. 61, 9–73.

    Article  CAS  Google Scholar 

  2. Zheng, N., Schulman, B. A., Song, L., et al. (2002) Structure of the Cul1-Rbx1-Skp1-F boxSkp2 SCF ubiquitin ligase complex. Nature 416, 703–709.

    Article  PubMed  CAS  Google Scholar 

  3. Schulman, B. A., Carrano, A. C., Jeffrey, P. D., et al. (2000) Insights into SCF ubiquitin ligases from the structure of the Skp1-Skp2 complex. Nature 408, 381–386.

    Article  PubMed  CAS  Google Scholar 

  4. Fiaux, J., Bertelsen, E. B., Horwich, A. L., and Wuthrich, K. (2002) NMR analysis of a 900K GroEL GroES complex. Nature 418, 207–211.

    Article  PubMed  CAS  Google Scholar 

  5. Bogan, A. A. and Thorn, K. S. (1998) Anatomy of hot spots in protein interfaces. J. Mol. Biol. 280, 1–9.

    Article  PubMed  CAS  Google Scholar 

  6. Vetter, I. R. and Wittinghofer, A. (2001) The guanine nucleotide-binding switch in three dimensions. Science 294, 1299–1304.

    Article  PubMed  CAS  Google Scholar 

  7. Lee, J.-O., Rieu, P., Arnaout, M. A., and Liddington, R. C. (1995) Crystal structure of the A-domain from the the α subunit of integrin CR3 (CD11b/CD18). Cell 80, 631–635.

    Article  PubMed  CAS  Google Scholar 

  8. Emsley, J., Knight, C. G., Farndale, R. W., Barnes, M. J. and Liddington, R. C. (2000) Structural basis of collagen recognition by integrin α2β1. Cell 101, 47–56.

    Article  PubMed  CAS  Google Scholar 

  9. Shimaoka, M., Tsan Xiao, T., Liu, J.-H., et al. (2003) Structures of the αL I Domain and its complex with ICAM-1 reveal a shape-shifting pathway for integrin regulation. Cell 112, 99–111.

    Article  PubMed  CAS  Google Scholar 

  10. Kuhlmann, U. C, Pommer, A. J., Moore, G. R., James, R., and Kleanthous, C. (2000) Specificity in protein-protein interactions: the structural basis for dual recognition in endonuclease colicin-immunity protein complexes. J. Mol. Biol. 301, 1163–1178.

    Article  PubMed  CAS  Google Scholar 

  11. Xiong, J. P., Stehle, T., Zhang, R., et al. (2002) Crystal structure of the extracellular segment of integrin αVβ3 in complex with an Arg-Gly-Asp ligand. Science 296, 151–155.

    Article  PubMed  CAS  Google Scholar 

  12. Huizinga, E. G., Tsuji, S., Romijn, R. A., et al. (2002) Structures of glycoprotein Ibalpha and its complex with von Willebrand factor A1 domain. Science 297, 1176–1179.

    Article  PubMed  CAS  Google Scholar 

  13. Nishida, N., Sumikawa, H., Sakakura, M., et al. (2003) Collagen-binding mode of vWF-A3 domain determined by a transferred cross-saturation experiment. Nat. Struct. Biol. 10, 53–58.

    Article  PubMed  CAS  Google Scholar 

  14. Bjorkman, P. J., Saper, M. A., Samraoui, B., Bennett, W. S., Strominger, J. L., and Wiley, D. C. (1987) The foreign antigen binding site and T cell recognition regions of class I histocompatibility antigens. Nature 329, 512–518.

    Article  PubMed  CAS  Google Scholar 

  15. Liddington, R. C, Yan, Y.,R.,S., Benjamin, T., and Harrison, S. C. (1991) Crystal structure of Simian Virus 40 at 3.8 Å resolution. Nature 354, 278–284.

    Article  PubMed  CAS  Google Scholar 

  16. Yaffe, M. B., Rittinger, K., Volinia, S., et al. (1997) The structural basis for 14-3-3: phosphopeptide binding specificity. Cell 91, 961–971.

    Article  PubMed  CAS  Google Scholar 

  17. Petosa, C, Masters, S. C, Bankson, L. A., et al. (1998) 14-3-3ζ binds a phosphorylated Raf peptide and an unphosphorylated peptide via its conseved amphipathic groove. J. Biol. Chem. 273, 16,305–16,310.

    Article  PubMed  CAS  Google Scholar 

  18. Pokutta, S. and Weis, W. I. (2000) Structure of the dimerization and β-catenin-binding region of α-catenin. Molecular Cell 5, 533–543.

    Article  PubMed  CAS  Google Scholar 

  19. Lee, J. O., Russo, A. A., and Pavletich, N. P. (1998) Structure of the retinoblastoma tumour-suppressor pocket domain bound to a peptide from HPV E7. Nature 391, 859–865.

    Article  PubMed  CAS  Google Scholar 

  20. Eck, M. J., Shoelson, S. E., and Harrison, S. C. (1993) Recognition of a high-affinity phosphotyrosyl peptide by the Src homology-2 domain of p56lck. Nature 362, 87–91.

    Article  PubMed  CAS  Google Scholar 

  21. Zhou, M. M., Ravichandran, K. S., Olejniczak, E. F., et al. (1995) Structure and ligand recognition of the phosphotyrosine binding domain of Shc. Nature 378, 584–589.

    Article  PubMed  CAS  Google Scholar 

  22. Doyle, D. A., Lee, A., Lewis, J., Kim, E., Sheng, M., and MacKinnon, R. (1996) Crystal structures of a complexed and peptide-free membrane protein-binding domain: molecular basis of peptide recognition by PDZ. Cell 85, 1067–1076.

    Article  PubMed  CAS  Google Scholar 

  23. Hayashi, I., Vuori, K, and Liddington, R. C. (2002) The focal adhesion targeting (FAT) region of focal adhesion kinase is a four-helix bundle that binds paxillin. Nat. Struct. Biol. 9, 101–106.

    Article  PubMed  CAS  Google Scholar 

  24. Meador, W. E., Means, A. R., and Quiocho, F. A. (1993) Modulation of calmodulin plasticity in molecular recognition on the basis of x-ray structures. Science 262, 1718–1721.

    Article  PubMed  CAS  Google Scholar 

  25. Musacchio, A., Saraste, M., and Wilmanns, M. (1994) High-resolution crystal structures of tyrosine kinase SH3 domains complexed with proline-rich peptides. Nat. Struct. Biol. 1, 546–551.

    Article  PubMed  CAS  Google Scholar 

  26. Fedorov, A. A., Fedorov, E., Gertler, F., and Almo, S. C. (1999) Structure of EVH1, a novel proline-rich ligand-binding module involved in cytoskeletal dynamics and neural function. Nat. Struct. Biol. 6, 661–665.

    Article  PubMed  CAS  Google Scholar 

  27. Harrison, S. C. (1996) Peptide-surface association: the case of PDZ and PTB domains. Cell 86, 341–343.

    Article  PubMed  CAS  Google Scholar 

  28. Di Paolo, G., Pellegrini, L., Letinic, K., et al. (2002) Recruitment and regulation of phosphatidylinositol phosphate kinase type 1 by the FERM domain of talin. Nature 420, 85–89.

    Article  PubMed  Google Scholar 

  29. Ling, K., Doughman, R. L., Firestone, A. J., Bunce, M. W., and Anderson, R. A. (2002) Type I phosphatidylinositol phosphate kinase targets and regulates focal adhesions. Nature 420, 89–93.

    Article  PubMed  CAS  Google Scholar 

  30. Garcia-Alvarez, B., de Pereda, J. M., Calderwood, D. A., et al. (2003) Structural Determinants of Integrin Recognition by Talin. Mol. Cell 11, 49–58.

    Article  PubMed  CAS  Google Scholar 

  31. Hamada, K., Shimizu, T., Yonemura, S., Tsukita, S., Tsukita, S., and Hakoshima, T. (2003) Structural basis of adhesion-molecule recognition by ERM proteins revealed by the crystal structure of the radixin-ICAM-2 complex. EMBO J. 22, 502–514.

    Article  PubMed  CAS  Google Scholar 

  32. Cowan, K. J., Law, D. A., and Phillips, D. R. (2000) Identification of shc as the primary protein binding to the tyrosine-phosphorylated beta 3 subunit of alpha IIbbeta 3 during outside-in integrin platelet signaling. J. Biol. Chem. 275, 36,423–36,429.

    Article  PubMed  CAS  Google Scholar 

  33. Xu, W., Harrison, S. C., and Eck, M. J. (1997) Three-dimensional structure of the tyrosine kinase c-Src. Nature 385, 595–602.

    Article  PubMed  CAS  Google Scholar 

  34. Hof, P., Pluskey, S., Dhe-Paganon, S., Eck, M. J., and Shoelson, S. E. (1998) Crystal structure of the tyrosine phosphatase SHP-2. Cell 92, 441–450.

    Article  PubMed  CAS  Google Scholar 

  35. Pearson, M. A., Reczek, D., Bretscher, A., and Karplus, P. A. (2000) Structure of the ERM protein moesin reveals the FERM domain fold masked by an extended actin binding tail domain. Cell 101, 259–270.

    Article  PubMed  CAS  Google Scholar 

  36. Martel, V., Racaud-Sultan, C., Dupe, S., et al. (2001) Conformation, localization, and integrin binding of talin depend on its interaction with phosphoinositides. J. Biol. Chem. 276, 21,217–21,227.

    Article  PubMed  CAS  Google Scholar 

  37. Yan, B., Calderwood, D. A., Yaspan, B., and Ginsberg, M. H. (2001) Calpain cleavage promotes talin binding to the beta 3 integrin cytoplasmic domain. J. Biol. Chem. 276, 28,164–28,170.

    Article  PubMed  CAS  Google Scholar 

  38. Lo Conte, L., Chothia, C. and Janin, J. (1999) The atomic structure of protein-protein recognition sites. J. Mol. Biol. 285, 2177–2198.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Liddington, R.C. (2004). Structural Basis of Protein-Protein Interactions. In: Fu, H. (eds) Protein-Protein Interactions. Methods in Molecular Biology, vol 261. Humana Press. https://doi.org/10.1385/1-59259-762-9:003

Download citation

  • DOI: https://doi.org/10.1385/1-59259-762-9:003

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-120-2

  • Online ISBN: 978-1-59259-762-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics