Skip to main content

Redox Sensitivity of NMDA Receptors

  • Protocol
NMDA Receptor Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 128))

Abstract

The redox modulatory sites of the NMDA receptor consist of critical cysteine residues, which when chemically reduced, increase the magnitude of NMDA-evoked responses. In contrast, after oxidation, NMDA-evoked responses are decreased in size. In recent years, as endogenous sources of oxidizing and reducing agents have been discovered, redox modulation of protein function has been recognized to be an important physiologic, as well as pathologic mechanism for many cell types. For our purposes, I will confine this review of redox modulation to covalent modification of sulfhydryl (thiol) groups on protein cysteine residues of native NMDA receptors. Of note, considerable recent work has focused on the use of recombinant NMDA receptor subunits and site-directed mutagenesis to identify the critical cysteine residues involved in this redox modulation, but these recombinant methods will not be reviewed here. For a recent summary of the molecular data, see ref. 1. If the cysteine sulfhydryls possess a sufficient redox potential, oxidizing agents can react to form adducts on single thiol groups, or if two free sulfhydryl groups are vicinal (in close proximity), disulfide bonds may possibly be formed. Reducing agents can regenerate free sulfhydryl (—SH) groups by donating electron(s). Considering endogenous redox agents, in addition to the usual suspects, including glutathione, lipoic acid, and reactive oxygen species, nitric oxide and its redox-related species have recently come to the fore.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stamler, J. S., Toone, E. J., Lipton, S. A., and Sucher, N. J. (1997) (S)NO signals: Translocation, regulation, and a consensus motif. Neuron 18, 691–696.

    Article  PubMed  CAS  Google Scholar 

  2. Stamler, J. S., Singel, D. J., and Loscalzo, J. (1992) Biochemistry of nitric oxide and its redox activated forms. Science 258, 1898–1902.

    Article  PubMed  CAS  Google Scholar 

  3. Feelisch, M. and Stamler, J. S. (eds.) (1996) Methods in Nitric Oxide Research, Wiley, Chichester, England, p. 712.

    Google Scholar 

  4. Lei, S. Z., Pan, Z.-H., Aggarwal, S. K., Chen, H.-S. V., Hartman, J., Sucher, N. J., et al. (1992) Effect of nitric oxide production on the redox modulatory site of the NMDA receptor-channel complex. Neuron 8, 1087–1099.

    Article  PubMed  CAS  Google Scholar 

  5. Lipton, S. A., Choi, Y.-B., Pan, Z.-H., Lei, S. Z., Chen, H.-S. V., Sucher, N. J., et al. (1993) A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds. Nature 364, 626–632.

    Article  PubMed  CAS  Google Scholar 

  6. Lipton, S. A., Choi, Y.-B., Sucher, N. J., Pan, Z.-H., and Stamler, J. S. (1996) Redox state, NMDA receptors, and NO-related species. Trends Pharmacol. Sci. 17, 186–187.

    Article  PubMed  CAS  Google Scholar 

  7. Sullivan, J. M., Traynelis, S. F., Chen, H.-S. V., Escobar, W., Heinemann, S. F., and Lipton, S. A. (1994) Identification of two cysteine residues that are required for redox modulation of the NMDA subtype of glutamate receptor. Neuron 13, 929–936.

    Article  PubMed  CAS  Google Scholar 

  8. Sucher, N. J., Schahram, A., Chi, C. L., Leclerc, C. L., Awobuluyi, M., Deitcher, D. L., et al. (1995) Developmental and regional expression pattern of a novel NMDA receptor-like subunit (NMDAR-L) in the rodent brain. J. Neurosci. 15, 6509–6520.

    PubMed  CAS  Google Scholar 

  9. Kohr, G., Eckardt, S., Lüddens, H., Monyer, H., and Seeburg, P. H. (1994) NMDA receptor channels: subunit-specific potentiation by reducing agents. Neuron 12, 1031–1040.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Humana Press Inc.

About this protocol

Cite this protocol

Lipton, S.A. (1999). Redox Sensitivity of NMDA Receptors. In: Li, M. (eds) NMDA Receptor Protocols. Methods in Molecular Biology™, vol 128. Humana Press. https://doi.org/10.1385/1-59259-683-5:121

Download citation

  • DOI: https://doi.org/10.1385/1-59259-683-5:121

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-713-7

  • Online ISBN: 978-1-59259-683-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics