Skip to main content

Chemical Methods for DNA Delivery

An Overview

  • Protocol
Gene Delivery to Mammalian Cells

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 245))

Abstract

Introduction of DNA into mammalian cells is a powerful tool for studying the function of various DNA sequences, and for gene therapy. The process of introducing DNA into cells for the purpose of gene expression is called transfection or gene delivery. Synthetic compounds used to facilitate DNA transfer are often named synthetic vectors or transfection reagents. Compared with biological (viral vectors) and physical methods that are covered elsewhere in this volume and in the next volume, the major advantages of synthetic vectors (or chemical methods) are their simplicity, ease of production, and relatively low toxicity. Many synthetic compounds have been developed since DEAE-dextran was first used in transfection experiments more than 35 years ago. Rapid progress in developing more efficient synthetic vectors has led to successful DNA delivery into a variety of cell types in vitro and in vivo. More importantly, in the last few years, we have witnessed significant efforts and progress in elucidating the mechanisms underlying synthetic vector-mediated DNA delivery. With the continuous effort to meet the need for safe and efficient gene-delivery methods for human gene therapy, it is foreseeable that significant advances will be made in the future. This article concentrates on four major types of chemical reagents that are available to most investigators: calcium phosphate, DEAE-dextran, cationic lipid, and cationic polymer. Each of these types of reagents has its advantages and disadvantages, some of which we briefly outline in this overview chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wu, G. Y. and Wu, C. H. (1987) Receptor-mediated gene transformation by a soluble DNA carrier system. J. Biol. Chem. 262, 4429–4432.

    PubMed  CAS  Google Scholar 

  2. Ferkol, T., Zperales, J. C., Mularo, F., and Hanson, R. W. (1996) Recepter-mediated gene transfer into macrophages. Proc. Natl. Acad. Sci. USA 93, 101–105.

    Article  PubMed  CAS  Google Scholar 

  3. Wagner, E., Cotton, M., Foisner, R., and Xbirnstiel, M. L. (1991) Transferrin-polycation-DNA complexes: the effect of polycations on the structure of the complex and DNA delivery to cells. Proc. Natl. Acad. Sci. USA 88, 4255–4259.

    Article  PubMed  CAS  Google Scholar 

  4. Wolfert, M. A. and Seymour, L. W. (1996) Atomic force microscopic analysis of the influence of the molecular weight of poly-L-lysine on the size of polyelectrolyte complexes formed with DNA. Gene Ther. 3, 269–273.

    PubMed  CAS  Google Scholar 

  5. Perales, J., C., Ferkol, T., Beegen, H., Ratnoff, O. D., and Hanson, R. W. (1994) Gene transfer in vivo: sustained expression and regulation of genes introduced into the liver by receptor-targeted uptake. Proc. Natl. Acad. Sci. USA 91, 4086–4090.

    Article  PubMed  CAS  Google Scholar 

  6. McKenzie, D. L., Collard, W. T., and Rice, K. G. (1999) Comparative gene transfer efficiency of low molecular weight polylysine DNA-condensing peptides. J. Pept. Res. 54, 311–318.

    Article  PubMed  CAS  Google Scholar 

  7. Erbacher, P., Roche, A. C., Monsigny, M., and Midoux, P. (1995) Glycosylated polylysine/DNA complexes: gene transfer efficiency in relation with the size and the sugar substitution level of glycosylated polylysines and with the plasmid size. Bioconjug. Chem. 6, 401–410.

    Article  PubMed  CAS  Google Scholar 

  8. Fritz, J. D., Herweijer, H., Zhang, G., and Wolff, J. A (1996) Gene transfer into mammalian cells using histone-condensed plasmid DNA Hum. Gene. Ther. 7, 1395–1404.

    Article  CAS  Google Scholar 

  9. Demirhan, I., Hasselmayer, O., Chandra, A., Ehemann, M., and Chandra, P. (1998) Histone-mediated transfer and expression of the HIV-1 tat gene in Jurkat cells. J. Hum. Virol. 1, 430–440.

    PubMed  CAS  Google Scholar 

  10. Richardson, S. C, Kolbe, H. V., and Duncan, R. (1999) Potential of low molecular mass chitosan as a DNA delivery system: biocompatibility, body distribution and ability to complex and protect DNA. Int. J. Pharm. 178, 231–243.

    Article  PubMed  CAS  Google Scholar 

  11. Roy, K., Mao, H. Q., Huang, S. K., and Leong, K. W. (1999) Oral gene delivery with chitosan-DNA nanoparticles generates immunologic protection in a murine model of peanut allergy. Nat. Med. 5, 387–391.

    Article  PubMed  CAS  Google Scholar 

  12. Wadhwa, M. S., Collard, W. T., Adami, R. C., McKenzie, D. L., and Rice, K. G. (1997) Peptide-mediated gene delivery: influence of peptide structure on gene expression. Bioconj. Chem. 8, 81–88.

    Article  CAS  Google Scholar 

  13. Duguid, J. G., Li, C., Shi, M., Logan, M. J., Alila, H., Rolland, A., et al. (1998) A physicochemical approach for predicting the effectiveness of peptide-based gene delivery systems for use in plasmid-based gene therapy. Biophys. J. 74, 2802–2814.

    Article  PubMed  CAS  Google Scholar 

  14. Mahat, R. I., Monera, O. D., Smith, L. C., and Rolland, A. (1999) Peptide-based gene delivery. Curr. Opin. Mol. Ther. 1, 226–243.

    PubMed  CAS  Google Scholar 

  15. Plank, C., Tang, M. X., Wolfe, A. R., and Szoka, F. C. (1999) Branched cationic peptides for gene delivery: role of type and number of cationic residues in formation and in vitro activity of DNA polyplexes. Hum. Gene Ther. 10, 319–332.

    Article  PubMed  CAS  Google Scholar 

  16. McKenzie, D. L., Kwok, K. Y., and Rice, K. G. (2000) A potent new class of reductively activated peptide gene delivery agents. J. Biol. Chem. 275, 9970–9977.

    Article  PubMed  CAS  Google Scholar 

  17. Niidome, T., Takaji, K., Urakawa, M., Ohmori, N., Wada, A., Hirayama, T., and Aoyagi, H. (1999) Chain length of cationic alpha-helical peptide sufficient for gene delivery into cells. Bioconjug. Chem. 10, 773–780.

    Article  PubMed  CAS  Google Scholar 

  18. Graham, F. L. and van der Eb, A. J. (1973) Transformation of rat cells by DNA of human adenovirus 5. Vi rology 54, 536–539.

    CAS  Google Scholar 

  19. Pagano, J. S. and Vaheri, A. (1965) Enhancement of infectivity of poliovirus RNA with diethylaminoethyl-dextran (DEAE-D). Arch. Gesamte Virusforsch. 17, 456–464.

    Article  PubMed  CAS  Google Scholar 

  20. Felgner, P. L., Gadek, T. R., Holm, M., Roman, R., Chan, H. W., Wenz, M., et al. (1987) Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc. Natl. Acad. Sci. USA 84, 7413–7417.

    Article  PubMed  CAS  Google Scholar 

  21. Miller, A. D. (1998) Cationic liposomes for gene therapy. Angew Chem. Int. Ed. Engl. 37, 1768–1785.

    Article  Google Scholar 

  22. Byk, G., Dubertret, C., Escriou, V., Frederic, M., Jaslin, G., Rangara, R., et al. (1998) Synthesis, activity, and structure-activity relationship studies of novel cationic lipids for DNA transfer. J. Med. Chem. 41, 224–235.

    Article  Google Scholar 

  23. Hui S. W., Langner, M., Zhao, Y. L., Ross, P., Hurley, E., Chan, K. (1996) The role of helper lipids in cationic liposome-mediated gene transfer. Biophys. J. 71, 590–599.

    Article  PubMed  CAS  Google Scholar 

  24. Lee, E. R., Marshall, J., Siegel, C. S., Jiang, C., Yew, N. S., Nichols, M. R., et al. (1996) Detailed analysis of structures and formulations of cationic lipids for efficient gene transfer to the lung. Hum. Gene Ther. 7, 1701–1717.

    Article  PubMed  CAS  Google Scholar 

  25. Ren, T., Song, Y. K., Zhang, G., and Liu, D. (2000) Structural basis of DOTMA for its high intravenous transfection activity in mouse. Gene Ther. 7, 764–768

    Article  PubMed  CAS  Google Scholar 

  26. Sternberg, B., Sorgi, F. L., and Huang, L. (1994) New structures in complex formation between DNA and cationic liposomes visualized by freeze-fracture electron microscopy. FEBS Lett. 356, 361–366.

    Article  PubMed  CAS  Google Scholar 

  27. Räler, J. O., Koltover, I., Salditt, T., and Safinya, C. R. (1997) Structure of DNA-cationic liposome complexes: DNA intercalation in multilamellar membranes in distinct interhelical packing regimes. Science 275, 810–814.

    Article  Google Scholar 

  28. Lasic, D. D., Strey, H., Stuart, M., Podgornik, R., and Frederik, P. M. (1997) The structure of DNA-liposome complexes. J. Am. Chem. Soc. 119, 832–833.

    Article  CAS  Google Scholar 

  29. Templeton, N. S., Lasic, D. D., Frederik, P. M., Strey, H. H., Roberts, D. D., and Pavlakis, G. N. (1997) Improved DNA: liposome complexes for increased systemic delivery and gene expression. Nat. Biotechnol. 15, 647–652.

    Article  PubMed  CAS  Google Scholar 

  30. Rose, P. C. and Hui, S. W. (1999) Lipoplex size is the major determinant of in vitro lipofection efficeincy. Gene Ther. 6, 651–659.

    Article  Google Scholar 

  31. Song, Y. K., Liu, F., Chu, S., and Liu, D. (1997) Characterization of cationic lipo-some-mediated gene transfer in vivo by intravenous administration. Hum. Gene Ther. 8, 1585–1594.

    Article  PubMed  CAS  Google Scholar 

  32. Liu, F. Qi, H., Huang, L., and Liu, D. (1997) Factors controlling the efficeincy of cationic lipid-mediated transfection in vivo via intravenous administration. Gene Ther. 4, 517–523.

    Article  PubMed  CAS  Google Scholar 

  33. Hong, K., Zheng, W., Baker, A., and Papahadjopoulos, D. (1997) Stabilization of cationic liposome-plasmid DNA complexes by polyamines and poly(ethylene glycol)-phospholipid conjugates for efficient in vivo gene delivery. FEBS Lett. 400, 233–237.

    Article  PubMed  CAS  Google Scholar 

  34. Liu, Y., Mounkes, L. C., Liggitt, H. D., Brown, C. S., Solodin, I., Heath, T. D., and Debs, R. J. (1997) Factors influencing the efficiency of cationic liposome-mediated intravenous gene delivery. Nat. Biotechnol. 15, 167–173.

    Article  PubMed  CAS  Google Scholar 

  35. Boussif, O., Lezoualch, F., Zanta, M. A., Mergny, M. D., Scherman, D., Demeneix, B., and Behr, J. P. (1995) A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc. Natl. Acad. Sci. USA 92, 7297–7301.

    Article  PubMed  CAS  Google Scholar 

  36. Abdallah, B., Hassan, A., Benoist, C., Goula, D., Behr, J. P., and Demeneix, B. A. (1996) A powerful nonviral vector for in vivo gene transfer into the adult mammalian brain: polyethylenimine. Hum. Gene Ther. 7, 1947–1954.

    Article  PubMed  CAS  Google Scholar 

  37. Tang, M., X. Redemann, C. T., and Szoka, F. C. Jr. (1996) In vitro gene delivery by degraded polyaminedoamine dendrimers. Bioconj. Chem. 7, 703–714.

    Article  CAS  Google Scholar 

  38. Kukowska-Latallo, J. F., Bielinska, A. U., Johnson, J., Spindler, R., Tomalia, D. A., and Baker, J. R. Jr. (1996) Efficient transfer of genetic material into mammalian cells using Starburst polyamidoamine dendrimers. Proc. Natl. Acad. Sci. USA 93, 4897–4902.

    Article  PubMed  CAS  Google Scholar 

  39. Dunlap, D., D., Maggi, A., Soria, M., R., and Monaco, L. (1997) Nanoscopic structure of DNA condensed for gene delivery. Nucleic Acids Res. 25, 3095–3101.

    Article  PubMed  CAS  Google Scholar 

  40. Dick, C. R. and Ham, G. E. (1970) Characterization of polyethyleimine. J. Macromol. Sci. Chem. A4 1301–1314.

    Article  Google Scholar 

  41. Suh, J., Paik, H. J., and Hwang B. K. (1994) Ionization of poly(ethylenimine) and poly(allylamine) at various pH’s. Bioorg. Chem. 22, 318–327.

    Article  CAS  Google Scholar 

  42. Tang, M.X. and Szoka, F.C. (1997) The influence of polymer structure on the interactions of cationic polymers with DNA and morphology of the resulting complexes. Gene Ther. 4, 823–832.

    Article  PubMed  CAS  Google Scholar 

  43. Gao, X. and Huang, L. (1996) Potentiation of cationic liposome mediated gene delivery by polycations. Biochemistry 35, 1027–1036.

    Article  PubMed  CAS  Google Scholar 

  44. Sorgi, F. L., Bhattacharya, S., and Huang, L. (1997) Protamine sulfate enhances lipid-mediated gene transfer. Gene Ther. 4, 961–968.

    Article  PubMed  CAS  Google Scholar 

  45. Chen, Q. R., Zhang, L., Stass, S. A., and Mixson, A. J. (2001) Branched co-polymers of histidine and lysine are efficient carriers of plasmids. Nucleic Acids Res. 29, 1334–1340.

    Article  PubMed  CAS  Google Scholar 

  46. Murphy E. A., Waring A. J., Murphy, J. C., Willson R. C., and Longmuir, K. J. (2001) Development of an effective gene delivery system: a study of complexes composed of a peptide-based amphiphilic DNA compaction agent and phospholipid. Nucleic Acid Res. 29, 3694–3704.

    Article  PubMed  CAS  Google Scholar 

  47. Boussif, O., Zanta, M. A. and Behr, J. P. (1996) Optimized galenics improve in vitro gene transfer with cationic molecules up to 1000-fold. Gene Ther. 3, 1074–1080.

    PubMed  CAS  Google Scholar 

  48. Legendre, J. Y. and Szoka, F. C. (1992) Delivery of plasmid DNA into mammalian cell lines using pH-sensitive liposomes, comparison with cationic liposomes. Pharm. Res. 9, 1235–1242.

    Article  PubMed  CAS  Google Scholar 

  49. Wrobel, I. and Collins, D. (1995) Fusion of cationic liposomes with mammalian cells occurs after endocytosis. Biochim. Biophys. Acta 1235, 296–304.

    Article  PubMed  Google Scholar 

  50. Friend, D. S., Papahadjopoulos, D., and Debs, R. J. (1996) Endocytosis and intra-cellular processing accompanying transfection mediated by cationic liposomes. Biochim. Biophys. Acta 1278, 41–50.

    Article  PubMed  Google Scholar 

  51. Zhou, X. and Huang, L. (1994) DNA transfection mediated by cationic liposomes containing lipopolylysine: characterization and mechanism of action. Biochim. Biophys. Acta 1189, 195–203.

    Article  PubMed  CAS  Google Scholar 

  52. Farhood, H., Serbina, N., and Huang, L. (1995) The role of dioleoylphos-phatidylethanol-amine in cationic liposome mediated gene transfer. Biochim. Biophys. Acta 1235, 289–295.

    Article  PubMed  Google Scholar 

  53. Wagner, E., Plank, C., Zatloukal, K., Cotton, M., and Birnstiel, M. L. (1992) Influenza virus hemagglutinin HA-2 N-terminal fusogenic peptides augment gene transfer by transferrin-polylysine/DNA complexes: towards a synthetic virus-like gene transfer vehicle. Proc. Natl. Acad. Sci. USA 89, 7934–7938.

    Article  PubMed  CAS  Google Scholar 

  54. Zabner, J., Fasbender, A. J., Moninger, T., Poellinger, K. A., and Welsh, M. J. (1995) Cellular and molecular barriers to gene transfer by a cationic lipid. J. Biol. Chem. 270, 18997–19007.

    Article  PubMed  CAS  Google Scholar 

  55. Xu, Y. and Szoka, F. C. Jr. (1996) Mechanism of DNA release from cationic lipo-some/DNA complexes used in cell transfection. Biochemistry 35, 5616–5623.

    Article  PubMed  CAS  Google Scholar 

  56. Lechardeur, D., Sohn, K. J., Haardt, M., Joshi, P. B., Monck, M., Graham, R. W., et al. (1999) Metabolic instability of plasmid DNA in the cytosol: a potential barrier to gene transfer. Gene Ther. 6, 482–497.

    Article  PubMed  CAS  Google Scholar 

  57. Pollard, H., Remy, J. S., Loussouarn, G., Demolombe, S., Behr, J. P., and Escande, D. (1998) Polyethylenimine but not cationic lipids promotes transgene delivery to the nucleus in mammalian cells. J. Biol. Chem. 273, 7507–7511.

    Article  PubMed  CAS  Google Scholar 

  58. Dean, D. A., Dean, B. S., Muller, S., and Smith, L. C. (1999) Sequence requirements for plasmid nuclear import. Exp. Cell Res. 253, 713–722.

    Article  PubMed  CAS  Google Scholar 

  59. Subramanian, A., Ranganathan, P., and Diamond, S.L. (1999) Nuclear targeting peptide scaffolds for lipofection of nondividing mammalian cells. Nat. Biotech. 17, 873–877.

    Article  CAS  Google Scholar 

  60. Sussman, H. (2001) Choosing the best reporter assay. The Scientist 15, 25–27.

    Google Scholar 

  61. de Wet, J. R., Wood, K. V., Helinski, D. R., and DeLuca, M. (1985). Cloning of firefly luciferase cDNA and the expression of active luciferase in Escherichia coli. Proc. Natl. Acad. Sci. USA 82, 7870–7873.

    Article  PubMed  Google Scholar 

  62. Conn, P. M. (1999) Green flourescent protein. Methods Enzymol. 302.

    Google Scholar 

  63. Caplen, N. J., Alton, E. W., Middleton, P. G., Dorin, J. R., Stevenson, B. J., Gao, X., et al. (1995) Liposome-mediated CFTR gene transfer to the nasal epithelium of patients with cystic fibrosis. Nat. Med. 1, 39–46.

    Article  PubMed  CAS  Google Scholar 

  64. McLachlan, G., Ho, L. P., Davidson-Smith, H., Samways, J., Davidson, H., Stevenson, B. J., et al. (1996) Laboratory and clinical studies in support of cystic fibrosis gene therapy using pCMV-CFTR-DOTAP. Gene Ther. 3, 1113–1123.

    PubMed  CAS  Google Scholar 

  65. Gill, D. R., Southern, K. W., Mofford, K. A., Seddon, T., Huang, L., Sorgi, F., et al. (1997) A placebo-controlled study of liposome-mediated gene transfer to the nasal epithelium of patients with cystic fibrosis. Gene Ther. 4, 199–209.

    Article  PubMed  CAS  Google Scholar 

  66. Nabel, G.J., Nabel, E. G., Yang, Z. Y., Fox, B. A., Plautz, G. E., Gao, X., et al. (1993) Direct gene transfer with DNA-liposome complexes in melanoma: expression, biologic activity, and lack of toxicity in humans. Proc. Natl. Acad. Sci. USA 90, 11307–11311.

    Article  PubMed  CAS  Google Scholar 

  67. Ostresh, M. (1999) No barriers to entry, transfection tools get biomolecules in the door. The Scientists 11, 21.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Liu, D., Chia, E.F., Tian, H. (2004). Chemical Methods for DNA Delivery. In: Heiser, W.C. (eds) Gene Delivery to Mammalian Cells. Methods in Molecular Biology™, vol 245. Humana Press. https://doi.org/10.1385/1-59259-649-5:3

Download citation

  • DOI: https://doi.org/10.1385/1-59259-649-5:3

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-086-1

  • Online ISBN: 978-1-59259-649-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics