Skip to main content

Choosing a Cloning Vector

  • Protocol
E. coli Plasmid Vectors

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 235))

Abstract

Since the construction of the first generation of general cloning vectors in the early 1970s, the number of plasmids created has increased to an almost countless number. Thus, a critical decision facing today’s investigator is that of which plasmid to use in a particular project? Despite the bewildering choice of commercial and other available vectors, the choice of which cloning vector to use can be decided by applying a small number of criteria: insert size, copy number, incompatibility, selectable marker, cloning sites, and specialized vector functions. Several of these criteria are dependent on each other. This chapter discusses these criteria in the context of choosing a plasmid for use as a cloning vector and Table 1 displays the features of some commonly used cloning vectors.

Table 1 Commonly Used Cloning Vectors

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Hohn, B., Koukolikova-Nicola, Z., Lindenmaier, W., et al. (1988) Cosmids. Biotechnology 10, 113–127.

    PubMed  CAS  Google Scholar 

  2. Collins, J. and Hohn, B. (1978) Cosmids: a type of plasmid gene-cloning vector that is packageable in vitro in bacteriophage lambda heads. Proc. Natl. Acad. Sci. USA 75, 4242–4246.

    Article  PubMed  CAS  Google Scholar 

  3. Ptashne, M. (1986) A Genetic Switch: Gene Control and Phage λ. Blackwell Scientific, Palo Alto, CA.

    Google Scholar 

  4. Herskowitz, I. and Hagen, D. (1980) The lysis–lysogeny decision of phage λ: explicit programming and responsiveness. Annu. Rev. Genet. 14, 399–445.

    Article  PubMed  CAS  Google Scholar 

  5. Shizuya, H., Birren, B., Kim, U. J., et al. (1992) Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using an F-factor-based vector. Proc. Natl. Acad. Sci. USA 89, 8794–8797.

    Article  PubMed  CAS  Google Scholar 

  6. Monaco, A. P. and Larin, Z. (1994) YACs, BACs, PACs and MACs: artificial chromosomes as research tools. Trends Biotechnol. 12, 280–286.

    Article  PubMed  CAS  Google Scholar 

  7. Palazzolo, M. J., Hamilton, B. A., Ding, D. L., et al. (1990) Phage lambda cDNA cloning vectors for subtractive hybridization, fusion-protein synthesis and Cre–loxP automatic plasmid subcloning. Gene 88, 25–36.

    Article  PubMed  CAS  Google Scholar 

  8. Kahn, M., Kolter, R., Thomas, C., et al. (1979) Plasmid cloning vehicles derived from plasmids ColE1, F, R6K, and RK2. Methods Enzymol. 68, 268–280.

    Article  PubMed  CAS  Google Scholar 

  9. Vieira, J. and Messing, J. (1982) The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene 19, 259–268.

    Article  PubMed  CAS  Google Scholar 

  10. Lin-Chao, S., Chen, W. T., and Wong, T. T. (1992) High copy number of the pUC plasmid results from a Rom/Rop-suppressible point mutation in RNA II. Mol. Microbiol. 6, 3385–3393.

    Article  PubMed  CAS  Google Scholar 

  11. Bolivar, F., Rodriguez, R. L., Greene, P. J., et al. (1977) Construction and characterization of new cloning vehicles, II: a multipurpose cloning system. Gene 2, 95–113.

    Article  PubMed  CAS  Google Scholar 

  12. Chang, A. C. and Cohen, S. N. (1978). Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the p15A cryptic miniplasmid. J. Bacteriol. 134, 1141–1156.

    PubMed  CAS  Google Scholar 

  13. Stoker, N. G., Fairweather, N. F., and Spratt, B. G. (1982) Versatile low-copy-number plasmid vectors for cloning in Escherichia coli. Gene 18, 335–341.

    Article  PubMed  CAS  Google Scholar 

  14. Donowitz, G. R. and Mandell, G. L. (1988) Beta-lactam antibiotics (1). N. Engl. J. Med. 318, 419–426.

    Article  PubMed  CAS  Google Scholar 

  15. Sutcliffe, J. G. (1978) Nucleotide sequence of the ampicillin resistance gene of Escherichia coli plasmid pBR322. Proc. Natl. Acad. Sci. USA 75, 3737–3741.

    Article  PubMed  CAS  Google Scholar 

  16. Umezawa, H. (1979) Studies on aminoglycoside antibiotics: Enzymic mechanism of resistance and genetics. Jpn. J. Antibiot. 32(Suppl), S1–S14.

    PubMed  CAS  Google Scholar 

  17. Drainas, D., Kalpaxis, D. L., and Coutsogeorgopoulos, C. (1987) Inhibition of ribosomal peptidyltransferase by chloramphenicol: kinetic studies. Eur. J. Biochem. 164, 53–58.

    Article  PubMed  CAS  Google Scholar 

  18. Shaw, W. V. (1983) Chloramphenicol acetyltransferase: enzymology and molecular biology. CRC Crit. Rev. Biochem. 14, 1–46.

    Article  PubMed  CAS  Google Scholar 

  19. Schnappinger, D. and Hillen, W. (1996) Tetracyclines: antibiotic action, uptake, and resistance mechanisms. Arch. Microbiol. 165, 359–369.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc.

About this protocol

Cite this protocol

Preston, A. (2003). Choosing a Cloning Vector. In: Casali, N., Preston, A. (eds) E. coli Plasmid Vectors. Methods in Molecular Biology™, vol 235. Humana Press. https://doi.org/10.1385/1-59259-409-3:19

Download citation

  • DOI: https://doi.org/10.1385/1-59259-409-3:19

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-151-6

  • Online ISBN: 978-1-59259-409-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics