Skip to main content

Improving Heterologous Protein Folding via Molecular Chaperone and Foldase Co-Expression

  • Protocol
E. coliGene Expression Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 205))

Abstract

Protein folding in the viscous and crowded environment of the cell is very different from in vitro processes in which a single protein is allowed to refold at low concentration in an optimized buffer. Although Anfinsen's observation that all the information necessary for a protein to reach a proper conformation is contained in the amino acid sequence (1) remains unchallenged, it has recently become obvious that the efficient in vivo folding of subsets of cellular proteins, as well as that of most recombinant proteins, requires the assistance of folding modulators that can be broadly classified as molecular chaperones and foldases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anfinsen C.B.(1973) Principles that govern the folding of protein chains. Science 181, 223–230.

    Article  PubMed  CAS  Google Scholar 

  2. Gross C. A. (1996) Function and regulation of the heat shock proteins in Escherichia coli and Salmonella Cellular and Molecular Biology (eds.), ASM Press, Washington, D. C., pp.1382–1399.

    Google Scholar 

  3. Bukau B. and Horwich A. L. (1998) The Hsp70 and Hsp60 chaperone machines. Cell 92, 351–366.

    Article  PubMed  CAS  Google Scholar 

  4. Gottesman M. E. and Hendrickson W. A. (2000) Protein folding and unfolding by Escherichia coli chaperones and chaperonins. Curr. Opin. Microbiol. 3, 197–202.

    Article  PubMed  CAS  Google Scholar 

  5. Richardson A., Landry S. J., and Georgopoulos C. (1998) The ins and outs of a molecular chaperone machine. Trends Biochem. Sci. 23, 138–143.

    Article  PubMed  CAS  Google Scholar 

  6. Fink A. L. (1999) Chaperone-mediated protein folding. Physiol. Rev. 79, 425–449.

    PubMed  CAS  Google Scholar 

  7. Zhu X., Zhao X., Burkholder W. F.,et al. (1996) Structural analysis of substrate binding by the molecular chaperone DnaK. Nature 272, 1606–1614.

    CAS  Google Scholar 

  8. Rüdiger S., Germeroth L., Schneider-Mergener J., and Bukau B. (1997) Substrate specificity of the DnaK chaperone determined by screening cellulose-bound peptide libraries. EMBO J. 16, 1501–1507.

    Article  PubMed  Google Scholar 

  9. Rüdiger S., Schneider-Mergener J., and Bukau B. (2001) Its substrate specificity characterizes the DnaJ co-chaperone as a scanning factor for the DnaK chaperone. EMBO J. 20, 1042–1050.

    Article  PubMed  Google Scholar 

  10. Fenton A., Kashi Y., Furtak K., and Horwich, A. L. (1994) Residues in chaperonin GroEL required for polypeptide binding and release. Nature 371, 614–619.

    Article  PubMed  CAS  Google Scholar 

  11. Coyle J. E., Jaeger J., Gross M., Robinson C. V., and Radford S. E. (1997) Structural and mechanistic consequences of polypeptide binding by GroEL. Fold. Des. 2, 93–104.

    Article  Google Scholar 

  12. Houry W. A., Frishman D., Eckerskorn C., Lottspeich F., and Hartl F. U. (1999) Identification of in vivo substrates of the chaperonin GroEL. Nature 402, 147–154.

    Article  PubMed  CAS  Google Scholar 

  13. Jakob U. and Buchner J. (1994) Assisting spontaneity: the role of hsp90 and small hsps as molecular chaperones. Trends Biochem. Sci. 19, 205–211.

    Article  PubMed  CAS  Google Scholar 

  14. Squires C. and Squires C. L. (1992) The Clp proteins: proteolysis regulators or molecular chaperones? J. Bacteriol. 174, 1081–1085.

    PubMed  CAS  Google Scholar 

  15. Bardwell J. C. and Craig E. A. (1988) Ancient heat shock gene is dispensable. J. Bacteriol. 170, 2977–2983.

    PubMed  CAS  Google Scholar 

  16. Katayama Y., Gottesman S., Pumphrey J., Ridikoff S., Clark W. P., and Maurizi M. R. (1988) The two-component, ATP-dependent Clp protease of Escherichia coli Purification, cloning, and mutational analysis of the ATP-binding component. J. Biol. Chem. 263, 15, 226–15, 236.

    Google Scholar 

  17. Squires C. L., Pedersen S., Ross B. M., and Squires C. (1991) ClpB is the Escherichia coli heat shock protein F84.1. J. Bacteriol. 173, 4254–4262.

    PubMed  CAS  Google Scholar 

  18. Thomas J. G. and Baneyx F. (1998) Roles of the Escherichia coli small heat shock proteins IbpA and IbpB in thermal stress management: comparison with ClpA, ClpB, and HtpG in vivo. J. Bacteriol. 180, 5165–5172.

    PubMed  CAS  Google Scholar 

  19. Woo K. M., Kim K. I., Goldberg A. L., Ha D. B., and Chung C. H. (1992) The heat shock protein ClpB in Escherichia coli is a protein-activated ATPase. J. Biol. Chem. 267, 20, 429–20, 434.

    Google Scholar 

  20. Zolkiewski M., Kessel M., Ginsburg A., and Maurizi M. R. (1999) Nucleotidedependent oligomerization of ClpB from Escherichia coli. Protein Sci. 8, 1899–1903.

    Article  PubMed  CAS  Google Scholar 

  21. Park S. K., Kim K. I., Woo K. M., etal. (1993) Site-directed mutagenesis of the dual translational initiation sites of the clpB gene ofE. coli and characterization of its gene products. J. Biol. Chem. 268, 20, 170–20, 174.

    Google Scholar 

  22. Goloubinoff P., Mogk A., Ben Zvi A. P., Tomoyasu T., and Bukau B. (1999) Sequential mechanism of solubilization and refolding of stable protein aggregates by a bichaperone network. Proc. Natl. Acad. Sci. USA 96, 13, 732–13, 737.

    Article  Google Scholar 

  23. Zolkiewski M. (1999) ClpB cooperates with DnaK, DnaJ and GrpE in suppressing protein aggregation. J. Biol. Chem. 274, 28, 083–28, 086.

    Article  Google Scholar 

  24. Mogk A., Tomoyasu T., Goloubinoff P., et al. (1999) Identification of thermolabile Escherichia coli proteins: prevention of aggregation by DnaK and ClpB. EMBO J. 18, 6934–6949.

    Article  PubMed  CAS  Google Scholar 

  25. Barnett M. E., Zolkiewska A., and Zolkiewski M. (2000) Structure and activity of ClpB from Escherichia coli. Role of the amino-and-carboxyl-terminal domains. J. Biol. Chem. 275, 37565–37571.

    Article  PubMed  CAS  Google Scholar 

  26. Thomas J. G. and Baneyx F. (2000) ClpB and HtpG facilitate de novo protein folding in stressed Escherichia coli cells. Mol. Microbiol. 36, 1360–1370.

    Article  PubMed  CAS  Google Scholar 

  27. Buchner J. (1999) Hsp90 & Co.-a holding for folding. Trends Biochem. Sci. 24, 136–141.

    Article  PubMed  CAS  Google Scholar 

  28. Nemoto T. K., Ono T., and Tanaka K. (2001) Substrate-binding character istics of proteins in the 90 kDa heat shock protein family. Biochem. J. 354, 663–670.

    Article  PubMed  CAS  Google Scholar 

  29. Spence J. and Georgopoulos C. (1989) Purification and properties of the Escherichia coli heat shock protein, HtpG. J. Biol. Chem. 264, 4398–4403.

    PubMed  CAS  Google Scholar 

  30. Allen S. P., Polazzi J. O., Gierse J. K., and Easton A. M. (1992) Two novel heat shock genes encoding proteins produced in response to heterologous protein expression in Escherichia coli. J. Bacteriol. 174, 6938–6947.

    PubMed  CAS  Google Scholar 

  31. Chuang S.-E., Burland V., Plunkett III, G., Daniels D. L., and Blattner F. R. (1993) Sequence analysis of four new heat-shock genes constituting the hslTS/ ibpAB and hslVU operons in Escherichia coli. Gene 134, 1–6.

    Article  PubMed  CAS  Google Scholar 

  32. Shearstone J. R. and Baneyx F. (1999) Biochemical characterization of the small heat shock protein IbpB from Escherichia coli. J. Biol. Chem. 274, 9937–9945.

    Article  PubMed  CAS  Google Scholar 

  33. Veinger L., Diamant S., Buchner J., and Goloubinoff P. (1998) The small heatshock protein IbpB from Escherichia coli stabilizes stress-denatured proteins for subsequent refolding by a multichaperone network. J. Biol. Chem. 273, 11, 032–11, 037.

    Article  Google Scholar 

  34. Hottenrott S., Schumann T., Plückthun A., Fischer G., and Rahfeld J.-U. (1997) The Escherichia coli SlyD is a metal ion-regulated peptidyl-prolyl cis/trans isomerase. J. Biol. Chem. 272, 15, 697–15, 701.

    Article  Google Scholar 

  35. Stoller G., Rücknagel K. P., Nierhaus K. H., Schmid F. X., Fischer G., and Rahfeld J.-U. (1995) A ribosome-associated peptidyl-prolyl cis/trans isomerase identified as the trigger factor. EMBO J. 14, 4939–4948.

    PubMed  CAS  Google Scholar 

  36. Hesterkamp T. and Bukau B. (1996) The Escherichia coli trigger factor. FEBS Lett. 389, 32–34.

    Article  PubMed  CAS  Google Scholar 

  37. Zarnt T., Tradler T., Stoller G., Scholz C., Schmid F. X., and Fischer G. (1997) Modular structure of the trigger factor required for high activity protein folding. J. Mol. Biol. 271, 827–837.

    Article  PubMed  CAS  Google Scholar 

  38. Deuerling E., Schulze-Specking A., Tomoyasu T., Mogk A., and Bukau B. (1999) Trigger factor and DnaK cooperate in folding of newly synthesized proteins. Nature 400, 693–696.

    Article  PubMed  CAS  Google Scholar 

  39. Teter S. A., Houry W. A., Ang, D., et al. (1999) Polypeptide flux through bacterial Hsp70: DnaK cooperates with trigger factor in chaperoning nascent chains. Cell 97, 755–765.

    Article  PubMed  CAS  Google Scholar 

  40. Krandor A., Sherman M., Moerschell R., and Goldberg A. L. (1997) Trigger factor associates with GroEL in vivo and promotes its binding to certain polypeptides. J. Biol. Chem. 272, 1730–1734.

    Article  Google Scholar 

  41. Economou A. (1998) Bacterial preprotein translocase: mechanism and conformational dynamics of a processive enzyme. Mol. Microbiol. 27, 511–518.

    Article  PubMed  CAS  Google Scholar 

  42. Kim J. and Kendall D. A. (2000) Sec-dependent protein export and the involvement of the molecular chaperone SecB. Cell Stress Chaperones 5, 267–275.

    Article  PubMed  CAS  Google Scholar 

  43. Muller M., Koch H. G., Beck K., and Schafer U. (2000) Protein traffic in bacteria: multiple routes from the ribosome to and across the membrane. Prog. Nucleic Acid Res. Mol. Biol. 66, 107–157.

    Article  CAS  Google Scholar 

  44. Beck K., Wu L. F., Brunner J., and Muller M. (2000) Discrimination between SRP-and SecA/SecB-dependent substrates involves selective recognition of nascent chains by SRP and trigger factor. EMBO J. 19, 134–143.

    Article  PubMed  CAS  Google Scholar 

  45. Lee H. C. and Bernstein H. D. (2001) The targeting pathway of Escherichia coli presecretory and integral membrane proteins is specified by the hydrophobicity of the targeting signal. Proc. Natl. Acad. Sci. USA 98, 3471–3476.

    Article  PubMed  CAS  Google Scholar 

  46. Missiakas D., Betton J.-M., and Raina S. (1996) New components of protein folding in extracytoplasmic compartments of Escherichia coli SurA, FkpA and Skp/OmpH. Mol. Microbiol. 21, 871–884.

    Article  PubMed  CAS  Google Scholar 

  47. Dartigalongue C., Missiakas D., and Raina S. (2001) Characterization of the Escherichia coli σE Regulon. J. Biol. Chem. 23, 23.

    Google Scholar 

  48. Chen R. and Henning U. (1996) A periplasmic protein (Skp) of Escherichia coli selectively binds a class of outer membrane proteins. Mol. Microbiol. 19, 1287–1294.

    Article  PubMed  CAS  Google Scholar 

  49. Bothmann H. and Pluckthun A. (2000) The periplasmic Escherichia coli peptidylprolyl cis,trans-isomerase FkpA. I. Increased functional expression of antibody fragments with and without cis-prolines. J. Biol. Chem. 275, 17, 100–17, 105.

    Article  Google Scholar 

  50. Bothmann H. and Plückthun A. (1998) Selection for a periplasmic factor improving phage display and functional periplasmic expression. Nat. Biotechnol. 16, 376–380.

    Article  PubMed  CAS  Google Scholar 

  51. Hayhurst A. and Harris W. J. (1999) Escherichia coli Skp chaperone co-expression improves solubility and phage display of single-chain antibody fragments. Protein Expr. Purif. 15, 336–343.

    Article  PubMed  CAS  Google Scholar 

  52. Dartigalongue C. and Raina S. (1998) A new heat-shock gene, ppiD, encodes a peptidyl-prolyl isomerase required for the folding of outer membrane proteins in Escherichia coli. EMBO J. 17, 3968–3980.

    Article  PubMed  CAS  Google Scholar 

  53. Battistoni A., Mazzetti A. P., Petruzzelli R., et al. (1995) Cytoplasmic and periplasmic production of human placental glutathione transferase in Escherichia coli. Protein Expression Purif. 6, 579–587.

    Article  CAS  Google Scholar 

  54. Kleerebezem M., Heutink M., and Tommassen J. (1995) Characterization of an Escherichia coli rotA mutant, affected in periplasmic peptidyl-prolyl cis/trans isomerase. Mol. Microbiol. 18, 313–320.

    Article  PubMed  CAS  Google Scholar 

  55. Knappik A., Krebber C., and Plückthun A. (1993) The effect of folding catalysts on the in vivo folding of different antibody fragments expressed in Escherichia coli. Bio/Technology 11, 77–83.

    Article  PubMed  CAS  Google Scholar 

  56. Lazar S. W. and Kolter R. (1996) SurA assists the folding of Escherichia coli outer membrane proteins. J. Bacteriol. 178, 1770–1773.

    PubMed  CAS  Google Scholar 

  57. Arie J. P., Sassoon N., and Betton J. M. (2001) Chaperone function of FkpA, a heat shock prolyl isomerase, in the periplasm of Escherichia coli. Mol. Microbiol. 39, 199–210.

    Article  PubMed  CAS  Google Scholar 

  58. Ramm K. and Plückthun A. (2000) The periplasmic Escherichia coli peptidylprolyl cis,trans isomerase FkpA. II. Isomerase-independent chaperone activity in vitro. J. Biol. Chem. 275, 17, 106–17, 113.

    Article  Google Scholar 

  59. Debarbieux L. and Beckwith J. (1999) Electron avenue: pathways of disulfide bond formation and isomerization. Cell 99, 117–119.

    Article  PubMed  CAS  Google Scholar 

  60. Missiakas D. and Raina S. (1997) Protein folding in the bacterial periplasm. J. Bacteriol. 179, 2465–2471.

    PubMed  CAS  Google Scholar 

  61. Thomas J. G. and Baneyx F. (1996) Protein misfolding and inclusion body formation in recombinant Escherichia coli cells overproducing heat-shock proteins. J. Biol. Chem. 271, 11, 141–11, 147.

    Google Scholar 

  62. Castanié M.-P., Bergès H., Oreglia J., Prère M.-F., and Fayet O. (1997) A set of pBR322-compatible plasmids allowing the testing of chaperone-assisted folding of proteins overexpressed in Escherichia coli. Anal. Biochem. 254, 150–152.

    Article  PubMed  Google Scholar 

  63. Nishihara K., Kanemori M., Kitagawa M., Yanaga H., and Yura T. (1998) Chaperone co-expression plasmids: differential and synergistic roles of DnaK-DnaJ-GrpE and GroEL-GroES in assisting folding of an allergen of Japanese cedar pollen, Cryj2, in Escherichia coli. Appl. Environ. Microbiol. 64, 1694–1699.

    PubMed  CAS  Google Scholar 

  64. Goloubinoff P., Gatenby A. A., and Lorimer G. H. (1989) GroE heat-shock proteins promote assembly of foreign prokaryotic ribulose bisphosphate carboxylase oligomers in Escherichia coli. Nature 337, 44–47.

    Article  PubMed  CAS  Google Scholar 

  65. Nishihara, K., Kanemori, M., Yanagi, H., and Yura, T. (2000) Overexpression of trigger factor prevents aggregation of recombinant proteins in Escherichia coli. Appl. Environ. Microbiol. 66, 884–889.

    Article  PubMed  CAS  Google Scholar 

  66. Pérez-Pérez, J., MartÍnez-Caja, C., Barbero, J. L., and Gutiérrez, J. (1995) DnaK/DnaJ supplementation improves the periplasmic production of human granulocyte-colony stimulating factor in Escherichia coli. Biochem Biophys. Res. Commun. 210, 524–529.

    Article  PubMed  Google Scholar 

  67. Bessette P. H., Aslund F., Beckwith J., and Georgiou G. (1999) Efficient folding. of proteins with multiple disulfide bonds in the Escherichia coli cytoplasm.. Proc. Natl. Acad. Sci. USA 96, 13, 703–13, 708.

    Article  Google Scholar 

  68. Kurokawa Y., Yanagi H., and Yura T. (2001) Overproduction of bacterial protein disulfide isomerase (DsbC) and its modulator (DsbD) markedly enhances periplasmic production of human nerve growth factor in Escherichia coli. J. Biol. Chem. 276, 14, 393-14, 399.

    Article  Google Scholar 

  69. Thomas J. G., Ayling A., and Baneyx F. (1997) Molecular chaperones, folding. catalysts and the recovery of biologically active recombinant proteins from. E. coli to fold or to refold. Appl. Biochem. Biotechnol. 66, 197–238.

    Article  PubMed  CAS  Google Scholar 

  70. Thomas J. G. and Baneyx F. (1996) Protein folding in the cytoplasm of Escherichia. coli requirements for the DnaK-DnaJ-GrpE and GroEL-GroES molecular. chaperone machines. Mol. Microbiol. 21, 1185–1196.

    Article  PubMed  CAS  Google Scholar 

  71. Roman L. J., Sheta E. A., Martasek P., Gross S. S., Liu Q., and Masters B. S. S. (1995) High-level expression of functional rat neuronal nitric oxide synthase in. Escherichia coli. Proc. Natl. Acad. Sci. USA 92, 8428–8432.

    Article  PubMed  CAS  Google Scholar 

  72. Thomas J. G. and Baneyx F. (1997) Divergent effects of chaperone overexpression. and ethanol supplementation on inclusion body formation in recombinant. Escherichia coli. Prot. Expr. Purif. 11, 289–296.

    Article  CAS  Google Scholar 

  73. Bergès H., Joseph-Liauzun E., and Fayet O. (1996) Combined effects of the. signal sequence and the major chaperone proteins on the export of human. cytokines in Escherichia coli. Appl. Environ. Microbiol. 62, 55–60.

    PubMed  Google Scholar 

  74. Jeong K. J. and Lee S. Y. (2000) Secretory production of human leptin in. Escherichia coli. Biotechnol. Bioeng. 67, 398–407.

    Article  PubMed  CAS  Google Scholar 

  75. Kurokawa Y., Yanagi H., and Yura T. (2000) Overexpression of protein disulfide. isomerase DsbC stabilizes multiple-disulfide-bonded recombinant protein. produced and transported to the periplasm in Escherichia coli. Appl. Environ.. Microbiol. 66, 3960–3965.

    Article  PubMed  CAS  Google Scholar 

  76. Qiu J., Swartz J. R., and Georgiou G. (1998) Expression of active human tissuetype. plasminogen activator in Escherichia coli. Appl. Environ. Microbiol. 64,. 4891–4896.

    PubMed  CAS  Google Scholar 

  77. Nossal N. and Heppel L. (1966) The release of enzymes by osmotic shock from. Escherichia coli in exponential phase. J. Biol. Chem. 241, 3055–3062.

    PubMed  CAS  Google Scholar 

  78. Betton J. M., Boscus D., Missiakas D., Raina S., and Hofnung M. (1996) Probing. the structural role of an alpha beta loop of maltose-binding protein by mutagenesis:. heat-shock induction by loop variants of the maltose-binding protein that. form periplasmic inclusion bodies. J. Mol. Biol. 262, 140–150.

    Article  PubMed  CAS  Google Scholar 

  79. Birnie G. D., Rickwood D., and Hell A. (1973) Buoyant densities and hydration. of nucleic acids, proteins and nucleoprotein complexes in metrizamide. Biochim.. Biophys. Acta 331, 283–294.

    PubMed  CAS  Google Scholar 

  80. Thome B. M. and Muller M. (1991) Skp is a periplasmic Escherichia coli protein requiring SecA and SecY for export. Mol. Microbiol. 5, 2815–2821.

    Article  PubMed  CAS  Google Scholar 

  81. Blum P., Ory J., Bauernfeind J., and Krska J. (1992) Physiological consequences. of DnaK and DnaJ overproduction in Escherichia coli. J. Bacteriol. 174,. 7436–7444.

    PubMed  CAS  Google Scholar 

  82. Ayling A. and Baneyx F. (1996) Influence of the GroE molecular chaperone. machine on the in vitro folding of Escherichia coli β-galactosidase. Protein Sci.. 5, 478–487.

    Article  PubMed  CAS  Google Scholar 

  83. Buchner J., Schmidt M., Fuchs M., Jaenicke R., Schmid F. X., and Kiefhaber T. (1991) GroE facilitates the refolding of citrate synthase by suppressing aggregation.. Biochemistry 30, 1586–1591.

    Article  PubMed  CAS  Google Scholar 

  84. Guthrie B. and Wickner W. (1990) Trigger factor deletion or overproduction. causes defective cell division but does not block protein export. J. Bacteriol. 172,. 5555–5562.

    PubMed  CAS  Google Scholar 

  85. Wessel D. and Flügge U. I. (1984) A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal. Biochem. 138, 141–143.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc.

About this protocol

Cite this protocol

Baneyx, F., Palumbo, J.L. (2003). Improving Heterologous Protein Folding via Molecular Chaperone and Foldase Co-Expression. In: Vaillancourt, P.E. (eds) E. coliGene Expression Protocols. Methods in Molecular Biology™, vol 205. Humana Press. https://doi.org/10.1385/1-59259-301-1:171

Download citation

  • DOI: https://doi.org/10.1385/1-59259-301-1:171

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-008-3

  • Online ISBN: 978-1-59259-301-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics