Skip to main content

Measuring Oxidative mtDNA Damage and Repair Using Quantitative PCR

  • Protocol
Mitochondrial DNA

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 197))

Abstract

The human mitochondrial genome was completely sequenced in 1981 by Anderson and co-workers (1) and consists of a closed circular supercoiled DNA molecule of 16,569 base pairs. Mammalian cells characteristically contain a few hundred to several thousand mitochondria, each with 2-10 copies of the genome. The mitochondrial genome encodes 13 polypeptides, 22 transfer RNAs (tRNAs), and 2 rRNA. The 13 polypeptides encoded by the mitochondrial DNA (mtDNA) are essential subunits of the electron transport chain (ETC) and ATP synthase; cells lacking mtDNA are completely dependent on glycolysis for survival (2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Anderson, S., Bankier, A. T., Barrell, B. G., deBruijn, M. H. L., Coulsen, A. R., Drouin, J., et al. (1981) Sequence and organization of the human mitochondrial genome. Nature 290, 457–465.

    Article  PubMed  CAS  Google Scholar 

  2. Desjardins, P., deMuys, J. M., and Morais, R. (1986) An established avian fibroblast cell line without mitochondrial DNA. Somatic Cell Mol. Genet. 12, 133–139.

    Article  CAS  Google Scholar 

  3. Boveris, A., Oshino, N., and Chance, B. (1972) The cellular production of hydrogen peroxide. Biochem. J. 128, 617–630.

    PubMed  CAS  Google Scholar 

  4. Turrens, J. F. and Boveris, A. (1980) Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria. Biochem. J. 191, 421–427.

    PubMed  CAS  Google Scholar 

  5. Wei, Y. H., Scholes, C. P., and King, T. E. (1981) Ubisemiquinone radicals from the cytochrome b-c1 complex of mitochondrial electron transport chain: demonstration of QP-S radical formation. Biochem. Biophys. Res. Commun. 99(4), 1411–1419.

    Article  PubMed  CAS  Google Scholar 

  6. Sawyer, D. E. and Van Houten, B. (1999) Repair of DNA damage in mitochondria. Mutat. Res. 434, 161–176.

    PubMed  CAS  Google Scholar 

  7. Richter, C., Park, J. W., and Ames, B. N. (1988) Normal oxidative damage to mitochondrial and nuclear DNA is extensive. Proc. Natl. Acad. Sci. USA 85, 6465–6467.

    Article  PubMed  CAS  Google Scholar 

  8. Helbock, H. J., Beckman, K. B., and Ames, B. N. (1999) 8-Hydroxydeoxyguano-sine and 8-hydroxyguanine as biomarkers of oxidative DNA damage. Methods Enzymol. 300, 156–166.

    Article  PubMed  CAS  Google Scholar 

  9. Helbock, H. J., Beckman, K. B., Shigenaga, M. K., Walter, P. B., Woodall, A. A., Yeo, H. C., et al. (1998) DNA oxidation matters: the HPLC-electrochemical detection assay of 8-oxo-deoxyguanosine and 8-oxo-guanine. Proc. Natl. Acad. Sci. USA 95(1), 288–293.

    Article  PubMed  CAS  Google Scholar 

  10. Wallace, D. C. (1992) Mitochondrial DNA mutations and neuromuscular diseases. Trends Genet. 5, 9–13.

    Article  Google Scholar 

  11. Fliss, M. S., Usadel, H., Caballero, O. L., Wu, L., Buta, M. R., Eleff, S. M., et al. (2000) Facile detection of mitochondrial DNA mutations in tumors and bodily fluids. Science 287(5460), 2017–2019.

    Article  PubMed  CAS  Google Scholar 

  12. Cortopassi, G. A., Shibata, D., Soong, N. W., and Arnheim, A. (1992) A pattern of accumulation of a somatic deletion of mitochondrial DNA in aging human tissues. Proc. Natl. Acad. Sci. USA 89, 7370–7374.

    Article  PubMed  CAS  Google Scholar 

  13. Polyak, K., Li, Y., Zhu, H., Lengauer, C., Wilson, J. K., Markowitz, S. D., et al. (1998) Somatic mutations of the mitochondrial genome in human colorectal tumours. Nature Genet. 20 (3), 291–293.

    Article  PubMed  CAS  Google Scholar 

  14. Clayton, D. A., Doda, J. N., and Freidberg, E. C. (1974) The absence of pyrimidine dimer repair mechanism in mammalian mitochondria. Proc. Natl. Acad. Sci. USA 71, 2777–2781.

    Article  PubMed  CAS  Google Scholar 

  15. Van Houten, B. and Friedberg, E. C. (1999) Mitochondrial DNA damage and repair. Mutat. Res. 434, 133–254 (special issue).

    Google Scholar 

  16. Croteau, D. L., Stierum, R. H., and Bohr, V. A. (1999) Mitochondrial DNA repair pathways. Mutat. Res. 434, 137–148.

    PubMed  CAS  Google Scholar 

  17. LeDoux, S. P., Driggers, W. J., Hollensworht, B. S., and Wilson, G. L. (1999) Repair of alkylation and oxidative damage in mitochondrial DNA. Mutat. Res. 434, 149–159.

    PubMed  CAS  Google Scholar 

  18. Pettepher, C. C., LeDoux, S. P., Bohr, V. A., and Wilson, G. L. (1991) Repair of alkali-labile sites within the mitochondrial DNA of RINr 38 cells after exposure to the nitrosourea streptozotocin. J. Biol. Chem. 266, 3113–3117.

    PubMed  CAS  Google Scholar 

  19. Driggers, W. J., LeDoux, S. P., and Wilson, G. L. (1993) Repair of oxidative damage within the mitochondrial DNA of RINr 38 cells. J. Biol. Chem. 268, 22,042–22,045.

    PubMed  CAS  Google Scholar 

  20. Kalinowski, D., Illenye, S., and Van Houten, B. (1992) Analysis of DNA damage and repair in murine leukemia L1210 cells using a quantitative polymerase chain reaction assay. Nucleic Acids Res. 20, 3485–3494.

    Article  PubMed  CAS  Google Scholar 

  21. Cheng, S., Chen, Y., Monforte, J. A., Higuchi, R., and Van Houten, B. (1995) Template integrity is essential for PCR amplification of 20-to 30-kb sequences from genomic DNA. PCR Methods Applic. 4, 294–298.

    CAS  Google Scholar 

  22. Yakes, F. M., Chen, Y., and Van Houten, B. (1996) PCR-based assays for the detection and quantitation of DNA damage and repair, in Technologies for Detecittion of DNA Damage and Mutations (Pfeifer, G. P.,ed.), Plenum, New York, pp. 171–184.

    Google Scholar 

  23. Ayala-Torres, S., Chen, Y., Svoboda, T., Rosenblatt, J., and Van Houten, B. (2000) Analysis of gene-specific DNA damage and repair using quantitative PCR, in Methods. A Companion to Methods in Enzymology (Doetsch, P. W.,ed.), Academic, New York, 22, 135–147.

    Google Scholar 

  24. Mewes, H. W., Hani, J., Pfeiffer, F., and Frishman, D. (1998) MIPS: a database for protein sequences and complete genomes. Nucleic Acids Res. 26, 33–37.

    Article  PubMed  Google Scholar 

  25. Yakes, F. M. and Van Houten, B. (1997) Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress. Proc. Natl. Acad. Sci. USA 94, 514–519.

    Article  PubMed  CAS  Google Scholar 

  26. Salazar, J. J. and Van Houten, B. (1997) Preferential mitochondrial DNA injury caused by glucose oxidase as a steady generator for hydrogen peroxide in human fibroblasts. Mutat. Res. 385(2), 139–149.

    PubMed  CAS  Google Scholar 

  27. Ballinger, S. W., Van Houten, B., Coklin, C. A., Jin, A., and Godley, B. (1999) Hydrogen peroxide causes significant mitochondrial DNA damage in human RPE cells. Exp. Eye Res. 68(6), 765–772.

    Article  PubMed  CAS  Google Scholar 

  28. Deng, G., Su, J. H., Ivins, K. J., Van Houten, B.,and Cottman, C. (1999) Bcl-2 facilitates recovery from DNA damage after oxidative stress. Exp. Neurol. 159, 309–318.

    Article  PubMed  CAS  Google Scholar 

  29. Ballinger, S. W., Patterson, C., Yan, C. N., Doan, R., Burow, D. L., Young, C. G., et al. (2000) Circ. Res. 86(9), 960–966.

    PubMed  CAS  Google Scholar 

  30. Mandavilli, B. S., Syed, F. A., and Van Houten, B. (2000) DNA damage in brain mitochondria caused by aging and MPTP treatment. Brain Res. 885(1), 45–52.

    Article  PubMed  CAS  Google Scholar 

  31. Singer, V. L., Jones, L. J., Yue, S. T., and Haugland, R. P. (1997) Characterization of PicoGreen reagent and development of a fluorescence-based solution assay for double-stranded DNA quantitation. Anal. Biochem. 249(2), 228–238.

    Article  PubMed  CAS  Google Scholar 

  32. Van Houten, B., Cheng, S., and Chen, Y. (2000) Measuring DNA damage and repair in human genes using quantitative amplification of long targets from nanogram quantities of DNA. Mutat. Res. 460(2), 81–94.

    PubMed  Google Scholar 

  33. Chandrasekhar, D. and Van Houten, B. (1994) High resolution mapping of UV-induced photoproducts in the E. coli lacI gene: inefficient repair in the nontranscribed strand correlates with high mutation frequency. J. Mol. Biol. 238, 319–322.

    Article  PubMed  CAS  Google Scholar 

  34. Chen, K. H., Srivastava, D. K., Yakes, F. M., Singhal, R. K., Rawson, T. Y., Sobol, R. W., et al. (1998) Up-regulation of base excision repair correlates with enhanced protection against a DNA damaging agent in mouse cell lines. Nucleic Acid Res. 26(8), 2001–2007.

    Article  PubMed  CAS  Google Scholar 

  35. Horton, J. K., Roy, G., Piper, J. T., Van Houten, B., Awashi, Y. C., Mitra, S., et al. (1999) Characterization of chlorambucil-resistant human ovarian carcinoma cell line overexpressing glutathione s-transferase μ. Biochem. Pharmacol. 58(4), 693–702.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Humana Press Inc.

About this protocol

Cite this protocol

Santos, J.H., Mandavilli, B.S., Van Houten, B. (2002). Measuring Oxidative mtDNA Damage and Repair Using Quantitative PCR. In: Copeland, W.C. (eds) Mitochondrial DNA. Methods in Molecular Biology™, vol 197. Humana Press. https://doi.org/10.1385/1-59259-284-8:159

Download citation

  • DOI: https://doi.org/10.1385/1-59259-284-8:159

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-972-8

  • Online ISBN: 978-1-59259-284-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics