Skip to main content

Cell Motility and Invasion Assays

  • Protocol
GTPase Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 189))

  • 859 Accesses

Abstract

Cell motility and invasion play an essential role in a wide range of biological functions, including many stages of development, wound healing, and immune function. Deregulated motile behavior is believed to contribute to pathological processes such as metastasis, tumor angiogenesis, and atherosclerosis (13). Rho family members control a multitude of functions that have been implicated in the regulation of cell migration. Most notable among these are the organization and dynamics of the actin cytoskeleton, intercellular and cell-substrate adhesion, vesicle trafficking, and lipid metabolism (4). Recently, Rac has been shown to stimulate the transcription of collagenase-1, a metalloproteinase involved in the remodeling of extracellular matrix (5).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Banyard, J. and Zetter, B. R. (1998) The role of cell motility in prostate cancer Cancer Metastasis Rev. 17, 449–458.

    Article  PubMed  CAS  Google Scholar 

  2. Zetter, B. R. (1998) Angiogenesis and tumor metastasis Annu. Rev. Med. 49, 407–424.

    Article  CAS  Google Scholar 

  3. Heldin, C. H. and Westermark, B. (1999) Mechanism of action and in vivo role of platelet-derived growth factor. Physiol. Rev. 79, 1283–1316.

    PubMed  CAS  Google Scholar 

  4. Van Aelst, L. and D’Souza-Schorey, C. (1997) Rho GTPases and signaling networks. Genes Dev. 11, 2295–2322.

    Article  PubMed  Google Scholar 

  5. Kheradmand, F., Werner, E., Tremble, P., Symons, M., and Werb, Z. (1998) Role of Rac1 and oxygen radicals in collagenase-1 expression induced by cell shape change. Science 280, 898–902.

    Article  PubMed  CAS  Google Scholar 

  6. Anand-Apte, B., Zetter, B. R., Viswanathan, A., Qiu, R. G., Chen, J., Ruggieri, R., et al. (1997) Platelet-derived growth factor and fibronectin-stimulated migration are differentially regulated by the Rac and extracellular signal-regulated kinase pathways. J. Biol. Chem. 272, 30,688–30,692.

    Article  PubMed  CAS  Google Scholar 

  7. Banyard, J., Anand-Apte, B., Symons, M., and Zetter, B. R. (2000) Motility and invasion are differentially modulated by Rho family GTPases. Oncogene 19, 580–591.

    Article  PubMed  CAS  Google Scholar 

  8. Allen, W. E., Zicha, D., Ridley, A. J., and Jones, G. E. (1998) A role for Cdc42 in macrophage chemotaxis.J. Cell Biol. 141, 1147–1157.

    Article  CAS  Google Scholar 

  9. Roberts, A. W., Kim, C., Zhen, L., Lowe, J. B., Kapur, R., Petryniak, B., et al. (1999) Deficiency of the hematopoietic cell-specific Rho family GTPase Rac2 is characterized by abnormalities in neutrophil function and host defense. Immunity 10, 183–196.

    Article  PubMed  CAS  Google Scholar 

  10. Keely, P. J., Westwick, J. K., Whitehead, I. P., Der, C. J., and Parise, L. V. (1997) Cdc42 and Rac1 induce integrin-mediated cell motility and invasiveness through PI(3)K. Nature 390, 632–636.

    Article  PubMed  CAS  Google Scholar 

  11. Shaw, L. M., Rabinovitz, I., Wang, H. H., Toker, A., and Mercurio, A. M. (1997) Activation of phosphoinositide 3-OH kinase by the alpha6beta4 integrin promotes carcinoma invasion. Cell 91, 949–960.

    Article  PubMed  CAS  Google Scholar 

  12. Itoh, K., Yoshioka, K., Akedo, H., Uehata, M., Ishizaki, T., and Narumiya, S. (1999) An essential part for Rho-associated kinase in the transcellular invasion of tumor cells. Nat. Med. 5, 221–225.

    Article  PubMed  CAS  Google Scholar 

  13. Ridley, A. J. (1998) Mammalian cell microinjection assay to study the function of Rac and Rho. Methods Mol. Biol. 84, 153–160.

    PubMed  CAS  Google Scholar 

  14. Nobes, C. D. and Hall, A. (1999) Rho GTPases control polarity, protrusion, and adhesion during cell movement. J. Cell Biol. 144, 1235–1244.

    Article  PubMed  CAS  Google Scholar 

  15. Vastrik, I., Eickholt, B. J., Walsh, F. S., Ridley, A., and Doherty, P. (1999) Sema3A-induced growth-cone collapse is mediated by Rac1 amino acids 17-32. Curr. Biol. 9, 991–998.

    Article  PubMed  CAS  Google Scholar 

  16. Qiu, R. G., Chen, J., Kirn, D., McCormick, F., and Symons, M. (1995) An essential role for Rac in Ras transformation. Nature 374, 457–459.

    Article  PubMed  CAS  Google Scholar 

  17. Qiu, R. G., Chen, J., McCormick, F., and Symons, M. (1995) A role for Rho in Ras transformation. Proc. Natl. Acad. Sci. USA 92, 11,781–11,785.

    Article  PubMed  CAS  Google Scholar 

  18. Qiu, R. G., Abo, A., McCormick, F., and Symons, M. (1997) Cdc42 regulates anchorage-independent growth and is necessary for Ras transformation. Mol. Cell Biol. 17, 3449–3458.

    PubMed  CAS  Google Scholar 

  19. Clark, E. A., King, W. G., Brugge, J. S., Symons, M., and Hynes, R. O. (1998) Integrin-mediated signals regulated by members of the rho family of GTPases. J. Cell Biol. 142, 573–586.

    Article  PubMed  CAS  Google Scholar 

  20. Peppelenbosch, M. P., Qiu, R. G., de Vries-Smits, A. M., Tertoolen, L. G., de Laat, S. W., McCormick, F., et al. (1995) Rac mediates growth factor-induced arachidonic acid release. Cell 81, 849–856.

    Article  PubMed  CAS  Google Scholar 

  21. Hess, J. A., Ross, A. H., Qiu, R. G., Symons, M., and Exton, J. H. (1997) Role of Rho family proteins in phospholipase D activation by growth factors. J. Biol. Chem. 272, 1615–1620.

    Article  PubMed  CAS  Google Scholar 

  22. Gossen, M. and Bujard, H. (1992) Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc. Natl. Acad. Sci. USA 89, 5547–5551.

    Article  PubMed  CAS  Google Scholar 

  23. Gossen, M., Bonin, A. L., and Bujard, H. (1993) Control of gene activity in higher eukaryotic cells by prokaryotic regulatory elements. Trends Biochem. Sci. 18, 471–475.

    Article  PubMed  CAS  Google Scholar 

  24. Baim, S. B., Labow, M. A., Levine, A. J., and Shenk, T. (1991) A chimeric mammalian transactivator based on the lac repressor that is regulated by temperature and isopropyl beta-D-thiogalactopyranoside. Proc. Natl. Acad. Sci. USA 88, 5072–5076.

    Article  PubMed  CAS  Google Scholar 

  25. Braselmann, S., Graninger, P., and Busslinger, M. (1993) A selective transcriptional induction system for mammalian cells based on Gal4-estrogen receptor fusion proteins. Proc. Natl. Acad. Sci. USA 90, 1657–1661.

    Article  PubMed  CAS  Google Scholar 

  26. No, D., Yao, T. P., and Evans, R. M. (1996) Ecdysone-inducible gene expression in mammalian cells and transgenic mice. Proc. Natl. Acad. Sci. USA 93, 3346–3351.

    Article  PubMed  CAS  Google Scholar 

  27. Schor, S. L. and Court, J. (1979) Different mechanisms in the attachment of cells to native and denatured collagen. J. Cell Sci. 38, 267–281.

    PubMed  CAS  Google Scholar 

  28. Keely, P. J., Fong, A. M., Zutter, M. M., and Santoro, S. A. (1995) Alteration of collagen-dependent adhesion, motility, and morphogenesis by the expression of antisense alpha 2 integrin mRNA in mammary cells. J. Cell Sci. 108, 595–607.

    PubMed  CAS  Google Scholar 

  29. Schor, S. L. (1980) Cell proliferation and migration on collagen substrata in vitro. J. Cell Sci. 41, 159–175.

    PubMed  CAS  Google Scholar 

  30. Kono, T., Tanii, T., Furukawa, M., Mizuno, N., Taniguchi, S., Ishii, M., et al. (1990) Correlation of contractility and proliferative potential with the extent of differentiation in mouse fibroblastic cell lines cultured in collagen lattices. J. Dermatol. 17, 149–154.

    PubMed  CAS  Google Scholar 

  31. Sells, M. A., Boyd, J. T., and Chernoff, J. (1999) p21-activated kinase 1 (Pak1) regulates cell motility in mammalian fibroblasts. J. CellBiol. 145, 837–849.

    Article  CAS  Google Scholar 

  32. Takaishi, K., Sasaki, T., and Takai, Y. (1995) Cell motility assay and inhibition by Rho-GDP dissociation inhibitor. Methods Enzymol. 256, 336–347.

    Article  PubMed  CAS  Google Scholar 

  33. Malliri, A., Symons, M., Hennigan, R. F., Hurlstone, A. F., Lamb, R. F., Wheeler, T., et al. (1998) The transcription factor AP-1 is required for EGF-induced activation of rho-like GTPases, cytoskeletal rearrangements, motility, and in vitro invasion of A431 cells.J. CellBiol. 143, 1087–1099.

    Article  CAS  Google Scholar 

  34. Hordijk, P. L., ten Klooster, J. P., van der Kammen, R. A., Michiels, F., Oomen, L. C., and Collard, J. G. (1997) Inhibition of invasion of epithelial cells by Tiam1-Rac signaling. Science 278, 1464–1466.

    Article  PubMed  CAS  Google Scholar 

  35. Michiels, F., Habets, G. G., Stam, J. C., van der Kammen, R. A., and Collard, J. G. (1995) A role for Rac in Tiam1-induced membrane ruffling and invasion. Nature 375, 338–340.

    Article  PubMed  CAS  Google Scholar 

  36. Stam, J. C., Michiels, F., van der Kammen, R. A., Moolenaar, W. H., and Collard, J. G. (1998) Invasion of T-lymphoma cells: cooperation between Rho family GTPases and lysophospholipid receptor signaling. EMBO J. 17, 4066–4074.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Humana Press Inc.

About this protocol

Cite this protocol

Banyard, J., Symons, M. (2002). Cell Motility and Invasion Assays. In: Manser, E., Leung, T. (eds) GTPase Protocols. Methods in Molecular Biology™, vol 189. Springer, Totowa, NJ. https://doi.org/10.1385/1-59259-281-3:129

Download citation

  • DOI: https://doi.org/10.1385/1-59259-281-3:129

  • Publisher Name: Springer, Totowa, NJ

  • Print ISBN: 978-0-89603-934-6

  • Online ISBN: 978-1-59259-281-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics