Skip to main content

Interfering with Ras Signaling Using Membrane-Permeable Peptides or Drugs

  • Protocol
GTPase Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 189))

  • 777 Accesses

Abstract

During the last two decades since the first oncogene product called v-Src was identified as a constitutively activated mutant of a normal mitogenic gene (proto-oncogene) encoding a Tyr kinase called c-Src in early 1980s, it was firmly established that the malignant transformation of normal cells is caused by a combination of the following genetic events: overexpression of a protooncogene or constitutive activation of its gene product (mitogenic signal transducer), and deletion of a tumor-suppressor gene (also called anti-oncogene or anti-mitogenic gene) or dysfunction of its gene product (anti-mitogenic signal transducer).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bos, J. L. (1989) Ras oncogenes in human cancer: a review. Cancer Res. 49, 4682–4689.

    PubMed  CAS  Google Scholar 

  2. Downward, J. (1998) Oncogenic RAS signaling network, in G Proteins, Cytoskel-eton and Cancer (Maruta, H. and Kohama, K., eds.), Landes Bioscience, Austin, TX, pp. 171–183.

    Google Scholar 

  3. Qiu, R., Che, J., Kirn, D., McCormick, F., and Symons, M. (1995) An essential role for Rac in RAS transformation. Nature 374, 457–459.

    Article  PubMed  CAS  Google Scholar 

  4. Qiu, R., Abo, A., McCormick, F., and Symons, M. (1997) CDC42 regulates anchorage-independent growth and is necessary for RAS transformation. Mol. CellBiol. 17, 3449–3458.

    CAS  Google Scholar 

  5. Lilienthal, J., Moon, S. Y., Lesche, R., Mammillapalli, R., Li, D., et al (2000) Genetic deletion of the PTEN tumor suppressor gene promotes cell motility by activation of Rac and CDC42 GTPases. Curr. Biol. 10, 401–404.

    Article  Google Scholar 

  6. Nur-E-Kamal, M. S. A., Kamal, J., Quresh, M., and Maruta, H. (1999) The CDC42-specific inhibitor derived from ACK-1 blocks v-Ha-RAS-induced transformation. Oncogene 18, 7787–7793.

    Article  PubMed  CAS  Google Scholar 

  7. Manser, E., Leung, T., Salihuddin, H., Tan, L, and Lim, L. (1993) A nonreceptor Tyr kinase that inhibits the GTPase activity of CDC42. Nature 363, 364–367.

    Article  PubMed  CAS  Google Scholar 

  8. Manser, E., Leung, T., Salihuddin, H., Zhao, Z., and Lim, L. (1994) A brain Ser/Thr kinase activated by CDC42 and Rac. Nature 367, 40–46.

    Article  PubMed  CAS  Google Scholar 

  9. Symons, M., Derry, J., Karlak, B., Jiang, S., Lemahieu, V., and McCormick, F. (1996) Wiskott-Aldrich syndrome protein, a novel effector for the GTPase CDC42, is implicated in actin polymerization. Cell 84, 723–734.

    Article  PubMed  CAS  Google Scholar 

  10. Miki, H., Sasaki, T., Takai, Y., and Takenawa, T. (1998) Induction of filopodium formation by a WASP-related actin depolymerizing protein N-WASP. Nature 391, 93–96.

    Article  PubMed  CAS  Google Scholar 

  11. Van Aelst, L., Joneson, T., and Bar-Sagi, D. (1996) Identification of a novel Rac-interacting protein involved in membrane ruffling. EMBO J. 15, 3778–3786.

    PubMed  Google Scholar 

  12. Kobayashi, K., Kuroda, S., Fukata, M., Nakamura T., Nagase, T., et al. (1998) P140Sra-1 (specifically Rac-associated protein) is a novel specific target for Rac GTPase. J. Biol. Chem. 273, 291–295.

    Article  PubMed  CAS  Google Scholar 

  13. Daniels, R., Zenke, F., and Bokoch, G. (1999) PIX stimulates PAK kinase activity through exchange factor-dependent and independent mechanisms. J. Biol. Chem. 274, 6047–6050.

    Article  PubMed  CAS  Google Scholar 

  14. Manser, E., Loo, T., Koh, C., Zhao, Z., Chen, X., et al. (1998) PAK kinases are directly coupled to the PIX family of nucleotide exchange factors. Mol. Cell 1, 183–192.

    Article  PubMed  CAS  Google Scholar 

  15. Obermeier, A., Ahmed, S., Manser, E., Yen, S., Hall, C., and Lim, L.(1998) PAK promotes morphological changes by actin upstream of Rac. EMBO J. 17, 4328–4339.

    Article  PubMed  CAS  Google Scholar 

  16. Maruta, H., He, H., Anjali, T., and Nur-E-Kamal, M. S. A. (1999) Cytoskeletal tumor suppressors that block oncogenic RAS signaling. Ann. NYAcad. Sci. 886, 48–57.

    Article  CAS  Google Scholar 

  17. Derossi, D., Chassaing, G., and Prochiantz, A. (1998) Trojan peptides: the penetratin system for intracellular delivery. Trends CellBiol. 8, 84–87.

    CAS  Google Scholar 

  18. Joliot, A., Pernelle, C., Deagostini-Bazin, H., and Pronchiantz, A. (1991) Anten-napedia homeobox peptide regulates neural morphogenesis. Proc. Nat. Acad. Sci. USA 88, 1864–1868.

    Article  PubMed  CAS  Google Scholar 

  19. Derossi, D., Joliot, A., Chassaing, G., and Prochiantz, A. (1994) The third helix of the Antennapedia homeodomain translocates through biological membranes. J. Biol. Chem. 269, 10,444–10,450.

    PubMed  CAS  Google Scholar 

  20. Williams, E., Dunican, D., Green, P., Howell, F., and Derossi, D. (1997) Selective inhibition of growth factor-stimulated mitogenesis by a cell-permeable Grb-2-binding peptide. J. Biol. Chem. 272, 22,349–22,354.

    Article  PubMed  CAS  Google Scholar 

  21. He, H., Hirokawa, Y., Levitzki, A., and Maruta, H. (2000) An anti-RAS cancer potential of PP1, an inhibitor specific for SRC family kinases: in vitro and in vivo studies. Cancer J. Sci. Am. 6, 243–248.

    CAS  Google Scholar 

  22. He, H., Hirokawa, Y., Manser, E., et al. (2001) Signal therapy of RAS-induced cancers in combination of AG 879 and PP1, specific inhibitors for ErbB2 and Src family kinases, that block PAK activation. Cancer J. 7, 191–202.

    PubMed  CAS  Google Scholar 

  23. Maruta, H., He, H., Tikoo, A., Vuong-Nheu, T., and Nur-E-Kamal, M. S. A. (1999) G proteins, phosphatidylinositides, actin-cytoskeleton in the control of cancer growth. Microsc. Res. Tech. 47, 61–66.

    Article  PubMed  CAS  Google Scholar 

  24. Glick, A., Sporn, M., and Yuspa, S. (1991) Altered regulation of TGFβ-1 and TGFα in primary keratinocytes and papillomas expressing v-Ha-RAS. Mol. Carcinog. 4, 210–219.

    Article  PubMed  CAS  Google Scholar 

  25. Higashiyama, S., Abraham, J., Miller, J., Fiddes, J., and Klagsbrun, M. (1991) A heparin-binding growth factor secreted by macrophage-like cells is related to EGF. Science 251, 936–939.

    Article  PubMed  CAS  Google Scholar 

  26. Normanno, N., Selvan, M., Qi, C., Saeki, T., Johnson, G., et al. (1994) Amphi-regulin as an autocrine growth factor for c-Ha-Ras /c-ErbB2-transformed human mammary epithelial cells. Proc. Nat. Acad. Sci. USA 91, 2790–2794.

    Article  PubMed  CAS  Google Scholar 

  27. Mincione, G., Bianco, C., Kannan, S., Colletta, G., Ciardiello, F., et al. (1996) Enhanced expression of heregulin in ErbB2 and c-Ha-RAS transformed mouse and human mammary epithelial cells. J. Cell Biochem. 60, 437–446.

    Article  PubMed  CAS  Google Scholar 

  28. Levitzki A. and Gazit A. (1995) Tyrosine kinase inhibition: an approach to drug development. Science 267, 1782–1788.

    Article  PubMed  CAS  Google Scholar 

  29. Hanke, J., Gardner, J., Dow, R., Changelian, P., Brissette, W., et al. (1996) Discovery of a novel, potent, and Src family-selective Tyr kinase inhibitor. J. Biol. Chem. 271, 695–701.

    Google Scholar 

  30. Maruta, H., Holden, J., Sizeland, A., and D’Abaco, G. (1991) The residues of RAS and Rap proteins that determine their GAP activities. J. Biol. Chem. 266, 11,661–11,668.

    PubMed  CAS  Google Scholar 

  31. Tang, Y., Yu, J., and Field, J. (1999) Signals from the RAS, Rac and Rho GTPases converge on the PAK kinase in Rat-1 fibroblasts. Mol. Cell Biol. 19, 1881–1891.

    PubMed  CAS  Google Scholar 

  32. Tikoo, A., Shakri, R., Connolly, L., Hirokawa, Y., Shishido, T., et al. (2000) Treatment of RAS-induced cancers by the F-actin bundling drug MKT-077. Cancer J. 6, 162–168.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Humana Press Inc.

About this protocol

Cite this protocol

Maruta, H., He, H., Nheu, T. (2002). Interfering with Ras Signaling Using Membrane-Permeable Peptides or Drugs. In: Manser, E., Leung, T. (eds) GTPase Protocols. Methods in Molecular Biology™, vol 189. Springer, Totowa, NJ. https://doi.org/10.1385/1-59259-281-3:075

Download citation

  • DOI: https://doi.org/10.1385/1-59259-281-3:075

  • Publisher Name: Springer, Totowa, NJ

  • Print ISBN: 978-0-89603-934-6

  • Online ISBN: 978-1-59259-281-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics