Skip to main content

Embryonic Stem Cells as a Model to Study Cardiac, Skeletal Muscle, and Vascular Smooth Muscle Cell Differentiation

  • Protocol
Embryonic Stem Cells

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 185))

Abstract

Embryonic stem (ES) cells, the undifferentiated cells of early embryos are established as permanent lines (1,2) and are characterized by their self-renewal capacity and the ability to retain their developmental capacity in vivo (3) and in vitro (46). The pluripotent properties of ES cells are the basis of gene targeting technologies used to create mutant mouse strains with inactivated genes by homologous recombination (7).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Evans, M. J. and Kaufman, M. H. (1981) Establishment in culture of pluripotential stem cells from mouse embryos. Nature 291, 154–156.

    Article  Google Scholar 

  2. Martin, G. (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma cells. Proc. Natl. Acad. Sci. USA 78, 7634–7638.

    Article  PubMed  CAS  Google Scholar 

  3. Bradley, A., Evans, M., Kaufman, M. H., and Robertson, E. (1984) Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines. Nature 309, 255–256.

    Article  PubMed  CAS  Google Scholar 

  4. Doetschman, T. C, Eistetter, H. R., Katz, M., Schmidt, W., and Kemler, R. (1985) The in vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium. J. Embryol. Exp. Morphol. 87, 27–45.

    PubMed  CAS  Google Scholar 

  5. Keller, G. (1995) In vitro differentiation of embryonic stem cells. Curr. Opin. Cell Biol. 7, 862–869.

    Article  PubMed  CAS  Google Scholar 

  6. Wobus, A., Rohwedel, J., Strübing, C, Jin S., Adler, K., Maltsev, V., and Hescheler J. (1997) In vitro differentiation of embryonic stem cells, in Methods in Developmental Toxicology and Biology (Klug, E. and Thiel, R., eds.), Blackwell Science, Berlin, pp. 1–17.

    Google Scholar 

  7. Thomas, K. R. and Capecchi, M. R. (1987) Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell 51, 503–512.

    Article  PubMed  CAS  Google Scholar 

  8. Wobus, A. M., Wallukat, G., and Hescheler, J. (1991) Pluripotent mouse embryonic stem cells are able to differentiate into cardiomyocytes expressing chronotropic responses to adrenergic and cholinergic agents and Ca2+ channel blockers. Differentiation 48, 173–182.

    Article  PubMed  CAS  Google Scholar 

  9. Maltsev, V. A., Rohwedel, J., Hescheler, J., and Wobus, A. M. (1993) Embryonic stem cells differentiate in vitro into cardiomyocytes representing sinusnodal, atrial and ventricular cell types. Mech. Dev. 44, 41–50.

    Article  PubMed  CAS  Google Scholar 

  10. Maltsev, V. A., Wobus, A. M., Rohwedel, J., Bader, M., and Hescheler, J. (1994) Cardiomyocytes differentiated in vitro from embryonic stem cells developmentally express cardiac-specific genes and ionic currents. Circ. Res. 75, 233–244.

    PubMed  CAS  Google Scholar 

  11. Miller-Hance, W. C, LaCorbiere, M., Fuller, S. J., Evans, S. M., Lyons, G., Schmidt, C, et al. (1993) In vitro chamber specification during embryonic stem cell cardiogenesis. J. Biol. Chem. 268, 25244–25252.

    PubMed  CAS  Google Scholar 

  12. Rohwedel, J., Maltsev, V., Bober, E., Arnold, H.-H., Hescheler, J., and Wobus, A. M. (1994) Muscle cell differentiation of embryonic stem cells reflects myogenesis in vivo: developmentally regulated expression of myogenic determination genes and functional expression of ionic currents. Dev. Biol. 164, 87–101.

    Article  PubMed  CAS  Google Scholar 

  13. Rose, O., Rohwedel, J., Reinhardt, S., Bachmann, M., Cramer, M., Rotter, M., et al. (1994) Expression of M-cadherin protein in myogenic cells during prenatal mouse development and differentiation of embryonic stem cells in culture. Dev. Dyn. 201, 245–259.

    Article  PubMed  CAS  Google Scholar 

  14. Strübing, C, Ahnert-Hilger, G., Jin, S., Wiedenmann, B., Hescheler, J., and Wobus, A. M. (1995) Differentiation of pluripotent embryonic stem cells into the neuronal lineage in vitro gives rise to mature inhibitory and excitatory neurons. Mech. Dev. 53, 275–287.

    Article  PubMed  Google Scholar 

  15. Bain, G., Kitchens, D., Yao, M., Huettner, J. E., and Gottlieb, D. I. (1995) Embryonic stem cells express neuronal properties in vitro. Dev. Biol. 168, 342–357.

    Article  PubMed  CAS  Google Scholar 

  16. Fraichard, A., Chassande, O., Bilbaut, G., Dehay, C, Savatier, P., and Samarut, J. (1995) In vitro differentiation of embryonic stem cells into glial cells and functional neurons. J. Cell Sci. 108, 3181–3188.

    PubMed  CAS  Google Scholar 

  17. Okabe, S., Forsberg-Nilsson, K., Spiro, A. C, Segal, M., and McKay, R. D. G. (1996) Development of neuronal precursor cells and functional postmitotic neurons from embryonic stem cells in vitro. Mech. Dev. 59, 89–102.

    Article  PubMed  CAS  Google Scholar 

  18. Wiles, M. V. and Keller, G. (1991) Multiple hematopoietic lineages develop from embryonic stem (ES) cells in culture. Development 111, 259–267.

    PubMed  CAS  Google Scholar 

  19. Hole, N. and Smith, A. G. (1994) Embryonic stem cells and hematopoiesis, in Culture of Hematopoietic Cells. (Freshney, R. I., Pragnell, I. B., and Freshney, M. G. eds.), Wiley-Liss, Inc. New York, pp. 235–249.

    Google Scholar 

  20. Dani, C, Smith, A. G., Dessolin, S., Leroy, P., Staccini, L., Villageois, P., et al. (1997) Differentiation of embryonic stem cells into adipocytes in vitro. J. Cell Sci. 110, 1279–1285.

    PubMed  CAS  Google Scholar 

  21. Kramer, J., Hegert, C, Guan, K., Wobus, A. M., Müller, P. K., and Rohwedel, J. (2000) Embryonic stem cell-derived chondrogenic differentiation in vitro: activation by BMP-2 and BMP-4. Mech. Dev. 92, 193–205.

    Article  PubMed  CAS  Google Scholar 

  22. Bagutti, C, Wobus, A. M., Fässler, R., and Watt, F. (1996) Differentiation of embryonal stem cells into keratinocytes: comparison of wild-type and β1 integrin-deficient cells. Dev. Biol. 179, 184–196.

    Article  PubMed  CAS  Google Scholar 

  23. Risau, W, Sariola, H., Zerwes, H.-G., Sasse, J., Ekblom, P., Kemler, R., and Doetschman, T. (1988) Vasculogenesis and angiogenesis in embryonic stem cell-derived embryoid bodies. Development 102, 471–478.

    PubMed  CAS  Google Scholar 

  24. Weitzer, G., Milner, D. J., Kim, J. U., Bradley, A., and Capetanaki, Y. (1995) Cytoskeletal control of myogenesis: a desmin null mutation blocks the myogenic pathway during embryonic stem cell differentiation. Dev. Biol. 172, 422–439.

    Article  PubMed  CAS  Google Scholar 

  25. Drab, M., Haller, H., Bychkow, R., Erdmann, B., Lindschau, C, Haase, H., et al. (1997) From totipotent embryonic stem cells to spontaneously contracting vascular smooth muscle cells: a retinoic acid and db-cAMP in vitro differentiation model. FASEB J. 11, 905–915.

    PubMed  CAS  Google Scholar 

  26. Wobus, A. M., Guan, K., Jin, S., Wellner, M.-C, Rohwedel, J., Ji, G., et al. (1997) Retinoic acid accelerates embryonic stem cell-derived cardiac differentiation and enhances development of ventricular cardiomyocytes. J. Mol. Cell. Cardiol. 29, 1525–1539.

    Article  PubMed  CAS  Google Scholar 

  27. Hescheler, J., Fleischmann, B. K., Lentini, S., Maltsev, V. A., Rohwedel, J., Wobus, A. M., and Addicks, K. (1997) Embryonic stem cells: a model to study structural and functional properties in cardiomyogenesis. Cardiovasc. Res. 36, 149–162.

    Article  PubMed  CAS  Google Scholar 

  28. Rohwedel, J., Guan, K., Zuschratter, W., Jin, S., Ahnert-Hilger, G., Fürst, D. O., et al. (1998) Loss of β1 integrin function results in a retardation of myogenic, but an acceleration of neuronal differentiation of embryonic stem (ES) cells in vitro. Dev. Biol. 201, 167–184.

    Article  PubMed  CAS  Google Scholar 

  29. Fässler, R., Rohwedel, J., Maltsev, V., Bloch, W., Lentini, S., Guan, K., et al. (1996) Differentiation and integrity of cardiac muscle cells are impaired in the absence of β1 integrin. J. Cell Sci. 109, 2989–2999.

    PubMed  Google Scholar 

  30. Rohwedel, J., Horak, V., Hebrok, M., Füchtbauer, E.-M., and Wobus, A. M. (1995) M-twist expression inhibits embryonic stem cell-derived myogenic differentiation in vitro. Exp. Cell Res. 220, 92–100.

    Article  PubMed  CAS  Google Scholar 

  31. Robbins, J., Gulick, J., Sanchez, A., Howles, P., and Doetschman, T. (1990) Mouse embryonic stem cells express the cardiac myosin heavy chain genes during development in vitro. J. Biol. Chem. 265, 11905–11909.

    PubMed  CAS  Google Scholar 

  32. Sanchez, A., Jones, W. K., Gulick, J., Doetschman, T., and Robbins, J. (1991) Myosin heavy chain gene expression in mouse embryoid bodies. J. Biol. Chem. 266, 22419–22426.

    PubMed  CAS  Google Scholar 

  33. Johansson, B. M. and Wiles, M. W. (1995) Evidence for involvement of activin A and bone morphogenetic protein 4 in mammalian mesoderm and hematopoietic development. Mol. Cell. Biol. 15, 141–151.

    PubMed  CAS  Google Scholar 

  34. Wobus, A. M., Rohwedel, J., Maltsev, V., and Hescheler, J. (1994) In vitro differentiation of embryonic stem cells into cardiomyocytes or skeletal muscle cells is specifically modulated by retinoic acid. Roux’s Arch. Dev. Biol. 204, 36–45.

    Article  CAS  Google Scholar 

  35. Stewart, C. L., Gadi, I., and Bhatt, H. (1994) Stem cells from primordial germ cells can reenter the germ line. Dev. Biol. 161, 626–628.

    Article  PubMed  CAS  Google Scholar 

  36. Rohwedel, J., Sehlmeyer, U., Shan, J., Meister, A., and Wobus, A. M. (1996) Primordial germ cell-derived mouse embryonic germ (EG) cells in vitro resemble undifferentiated stem cells with respect to differentiation capacity and cell cycle distribution. Cell Biol. Intern. 20, 579–587.

    Article  CAS  Google Scholar 

  37. Wobus, A. M., Kleppisch, T., Maltsev, V., and Hescheler, J. (1994) Cardiomyocyte-like cells differentiated in vitro from embryonic carcinoma cells P19 are characterized by functional expression of adrenoceptors and Ca2+ channels. In Vitro Cell. Dev. Biol. 30A, 425–434.

    Article  CAS  Google Scholar 

  38. Trower, M. K. and Elgar, G. S. (1994) PCR cloning using T-vectors, in Protocols for Gene Analysis. Methods in Molecular Biology, vol. 31. Humana Press, Totowa, N.J., pp. 19–33.

    Chapter  Google Scholar 

  39. Rudnicki, M. A. and McBurney M. W. (1987) Cell culture methods and induction of differentiation of embryonal carcinoma cell lines, in Teratocarcinomas and Embryonic Stem Cells—a Practical Approach (Robertson, E. J., ed.), IRL Press, Oxford, pp. 19–49.

    Google Scholar 

  40. Edwards, M. K. S., Harris, J. F., and McBurney, M. W. (1983) Induced muscle differentiation in an embryonal carcinoma cell line. Mol. Cell. Biol. 3, 2280–2286.

    PubMed  CAS  Google Scholar 

  41. Chomczynski, P. and Sacchi, N. (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162, 156–159.

    Article  PubMed  CAS  Google Scholar 

  42. Isenberg, G. and Klöckner, U. (1982) Calcium-tolerant ventricular myocytes prepared by preincubation in a “KB medium”. Pflügers Arch. 395, 6–18.

    Article  PubMed  CAS  Google Scholar 

  43. Pari, G., Jardine, K., and McBurney, M. W. (1991) Multiple CArG boxes in the human cardiac actin gene promoter required for expression in embryonic cardiac muscle cells developing in vitro from embryonal cardcinoma cells. Mol. Cell. Biol. 11, 4796–4803.

    PubMed  CAS  Google Scholar 

  44. Sauer, B. and Henderson, N. (1989) Cre-stimulated recombination at loxP-containing DNA sequences placed into the mammalian genome. Nucleic Acids Res. 17, 147–161.

    Article  PubMed  CAS  Google Scholar 

  45. Sauer, B. and Henderson, N. (1990) Targeted insertion of exogenous DNA into the eukaryotic genome by the Cre recombinase. New Biol. 2, 441–449.

    PubMed  CAS  Google Scholar 

  46. Chu, G., Hayakawa, H., and Berg, P. (1987) Electroporation for the efficient transfection of mammalian cells with DNA. Nucleic Acids Res. 15, 1311–1326.

    Article  PubMed  CAS  Google Scholar 

  47. Potter, H. (1988) Electroporation in biology: methods, application, and instrumentation. Anal. Biochem. 174, 361–373.

    Article  PubMed  CAS  Google Scholar 

  48. Ramirez-Salis, R., Davis, A. C., and Bradley, A. (1993) Gene targeting in ES cells, in Guide to Techniques in Mouse Development, vol. 225. (Wassarman, P. M. and DePamphelis, M. L., eds.), Academic Press, New York, pp. 855–878.

    Chapter  Google Scholar 

  49. Saiki, R. K., Gelfand, D. H., Stoffel, S., Scharf, S. J., Higuchi, R., Horn, G. T., et al. (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239, 487–491.

    Article  PubMed  CAS  Google Scholar 

  50. Southern, E. M. (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98, 503–517.

    Article  PubMed  CAS  Google Scholar 

  51. Smith, A. G., Heath, J. K., Donaldson, D. D., Wong, G. G., Moreau, J., Stahl, M., and Rogers, D. (1988) Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides. Nature 336, 688–690.

    Article  PubMed  CAS  Google Scholar 

  52. Smith, D. B. and Johnson, K. S. (1988) Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. Gene 67, 31–40.

    Article  PubMed  CAS  Google Scholar 

  53. Gearing, D. P., Nicola, N. A., Metcalf, D., Foote, S., Wilson, T. A., Gough, N. M., and Williams, R. L. (1989) Production of leukemia inhibitory factor in Escherichia coli by a novel procedure and its use in maintaining embryonic stem cells in culture. BioTechnology 7, 1157–1161.

    CAS  Google Scholar 

  54. Robertson, E. J. (1987) Embryo-derived stem cell lines, in Teratocarcinoma and Embryonic Stem Cells—a Practical Approach (Robertson, E. J., ed.), IRL Press, Oxford, pp. 71–112.

    Google Scholar 

  55. Myers, T. W. and Gelfand, D. H. (1991) Reverse transcription and DNA amplification by a Thermus thermophilus DNA polymerase. Biochemistry 30, 7661–7666.

    Article  PubMed  CAS  Google Scholar 

  56. Wong, H., Anderson, W. D., Cheng, T., and Riabowol, K. T. (1994): Monitoring mRNA expression by polymerase chain reaction: the “primer-dropping” method. Anal. Biochem. 223, 251–258.

    Article  PubMed  CAS  Google Scholar 

  57. Mortensen, R. M., Conner, D. A., Chao, S., Geisterfer-Lowrance, A. A., and Seidman, J. G. (1992) Production of homozygous mutant ES cells with a single targeting construct. Mol. Cell. Biol. 12, 2391–2395.

    PubMed  CAS  Google Scholar 

  58. Hasty, P. and Bradley, A. (1994) Gene targeting vectors for mammalian cells, in Gene Targeting—A Practical Approach (Joyner, A. L., ed.), (The Practical Approach Series). IRL Press, Oxford, pp. 1–32.

    Google Scholar 

  59. Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Analysis and cloning of eukaryotic genomic DNA, in Molecular Cloning—A Laboratory Manual, 2nd ed., CSH Laboratory Press, Cold Spring Harbor, N.Y., pp. 9.34–9.37.

    Google Scholar 

  60. Seidman, C. E., Bloch, K. D., Klein, K. A., Smith, J. A., and Seidman, J. G. (1984) Nucleotide sequences of the human and mouse atrial natriuretic factor genes. Science 226, 1206–1209.

    Article  PubMed  CAS  Google Scholar 

  61. Lints, T. J., Parsons, L. M., Hartley, L., Lyons, I., and Harvey, R. P. (1993) Nkx-2.5: a novel murine homeobox gene expressed in early heart progenitor cells and their myogenic descendants. Development 119, 419–431.

    PubMed  CAS  Google Scholar 

  62. Montarras, D., Chelly, J., Bober, E., Arnold, H., Ott, M.-O., Gros, F., and Pinset, C. (1991) Developmental patterns in the expression of Myf5, MyoD, myogenin and MRF4 during myogenesis. New Biol. 3, 592–600.

    PubMed  CAS  Google Scholar 

  63. Wang, D., Villasante, A., Lewis, S. A., and Cowan, N. J. (1986) The mammalian β-tubulin repertoire: hematopoietic expression of a novel, heterologous β-tubulin isotype. J. Cell Biol. 103, 1903–1910.

    Article  PubMed  CAS  Google Scholar 

  64. Konecki, D. S., Brennand, J., Fuscoe, J. C., Caskey, C. T., and Chinault, A. C. (1982) Hypoxanthine-guanine phosphoribosyltransferase genes of mouse and Chinese hamster: construction and sequence analysis of cDNA recombinants. Nucleic Acids Res. 10, 6763–6775.

    Article  PubMed  CAS  Google Scholar 

  65. Guan, K., Fürst, D. O., and Wobus, A. M. (1999) Modulation of sarcomere organization during embryonic stem cell-derived cardiomyocyte differentiation. Eur. J. Cell Biol. 87, 813–823.

    Google Scholar 

  66. Fürst, D. O., Osborn, M., Nave, R., and Weber, K. (1988) The organization of titinfilaments in the half-sarcomere revealed by monoclonal antibodies in immunelectron microscopy: a map of the nonrepetitive epitopes starting at the Z-line extends close to the M-line. J. Cell Biol. 106, 1563–1572.

    Article  PubMed  Google Scholar 

  67. Obermann, W. M., Gautel, M., Steiner, F., van der Ven, P. F., Weber, K., and Fürst, D. O. (1996) The structure of the sarcomeric M band: localization of defined domains of myomesin, M-protein, and the 250-kD carboxy-terminal region of titin by immunoelectron microscopy. J. Cell Biol. 134, 1441–1453.

    Article  PubMed  CAS  Google Scholar 

  68. Van der Ven, P. F., Obermann, W. M., Lemka, B., Gautel, M., Weber, K., and Fürst, D. O. (2000) The characterization of muscle filamin isoforms suggests a possible role of γ-filamin/ABP-L in sarcomeric Z-disc formation. Cell Motil. Cytoskeleton 45, 149–162.

    Article  PubMed  Google Scholar 

  69. Vinkemeier, U., Obermann, W., Weber, K., and Fürst, D. O. (1993) The globular head domain of titin extends into the center of the sarcomeric M band. cDNA cloning, epitope mapping and immunoelectron microscopy of two titin-associated proteins. J. Cell Sci. 106, 319–330.

    PubMed  CAS  Google Scholar 

  70. Bader, D., Masaki, T., and Fischman, D. A. (1982) Immunochemical analysis of myosin heavy chain during avian myogenesis in vivo and in vitro. J. Cell Biol. 95, 763–770.

    Article  PubMed  CAS  Google Scholar 

  71. Skalli, O., Gabbiani, G., Babai, F., Seemayer, T. A., Pizzolato, G., and Schurch, W. (1988) Intermediate filament proteins and actin isoforms as markers for soft tissue tumor differentiation and origin. II. Rhabdomyosarcomas. Am. J. Pathol. 130, 515–531.

    PubMed  CAS  Google Scholar 

  72. Rudnicki, M. A., Jackowski, G., Saggin, L., and McBurney, M. W. (1990) Actin and myosin expression during development of cardiac muscle from cultured embryonal carcinoma cells. Dev. Biol. 138, 348–358.

    Article  PubMed  CAS  Google Scholar 

  73. Müller-Bardorf, M., Freitag, H., Scheffold, T., Remppis, A., Kubler, W., and Katus, H. A. (1995) Development and characterization of a rapid assay for bedside determinations of cardiac troponin T. Circulation 92, 2869–2875.

    Google Scholar 

  74. Crow, M. T. and Stockdale, F. E. (1986) The developmental program of fast myosin heavy chain expression in avian skeletal muscles. Dev. Biol. 118, 333–342.

    Article  PubMed  CAS  Google Scholar 

  75. Gautel, M., Fürst, D. O., Cocco, A., and Schiaffino, S. (1998) Isoform transitions of the myosin binding protein C family in developing human and mouse muscles: lack of isoform transcomplementation in cardiac muscle. Circ. Res. 82, 124–129.

    PubMed  CAS  Google Scholar 

  76. Skalli, O., Ropraz, P., Trzeciak, A., Benzonana, G., Gillessen, D., and Gabbiani, G. (1986) A monoclonal antibody against a-smooth muscle actin: a new probe for smooth muscle differentiation. J. Cell Biol. 103, 2787–2796.

    Article  PubMed  CAS  Google Scholar 

  77. Naumann, K. and Pette, D. (1994) Effects of chronic stimulation with different impulse patterns on the expression of myosin isoforms in rat myotube cultures. Differentiation 55, 203–211.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Wobus, A.M., Guan, K., Yang, HT., Boheler, K.R. (2002). Embryonic Stem Cells as a Model to Study Cardiac, Skeletal Muscle, and Vascular Smooth Muscle Cell Differentiation. In: Turksen, K. (eds) Embryonic Stem Cells. Methods in Molecular Biology™, vol 185. Springer, Totowa, NJ. https://doi.org/10.1385/1-59259-241-4:127

Download citation

  • DOI: https://doi.org/10.1385/1-59259-241-4:127

  • Publisher Name: Springer, Totowa, NJ

  • Print ISBN: 978-0-89603-881-3

  • Online ISBN: 978-1-59259-241-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics