Skip to main content

Particulate and Soluble Glycosaminoglycan-Synthesizing Enzymes

Preparation Assay and Use

  • Protocol
Proteoglycan Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 171))

  • 1214 Accesses

Abstract

The general features of the biosynthetic assembly of all proteoglycans (see refs. 19 for reviews), except the keratan sulfate portions of cartilage and cornea (see Note 1), consist of sequential: (1) synthesis of the core protein; (2) xylosylation of specific Ser moieties of the core protein; (3) addition of two galactose (Gal) residues to the xylose (Xyl); (4) completion of a common tetrasaccharide linkage region by addition of a glucuronic acid (GlcA) residue; (5) addition of an N-acetylgalactosamine (GalNAc) or N-acetylglucosamine (GlcNAc) residue to initiate the chondroitin/dermatan or heparan glycosaminoglycan, respectively; (6) repeat addition of hexosamine residues alternating with GlcA residues to form the large heteropolymer glycosaminoglycan chains; and (7) modification of these glycosaminoglycan chains by variable N-deacetylation/N-sulfation, and/or O-sulfation, and variable epimerization of GlcA to iduronic acid (IdceA). The Xyl may occasionally be 2-phosphorylated in some chondroitin sulfate (10) and heparan sulfate (11), and one or both of the Gal residues of the chondroitin sulfate linkage region may be 4-O- (12) or 6-O-sulfated (13). However, Gal sulfation has not been found in the identical oligosaccharide linkage region of heparin/heparan sulfate (14). In addition, glycoprotein-like N-linked glycosylation and/or O-linked glycosylation takes place before or while the synthesis of the oligosaccharide linkage region and glycosaminoglycans are being formed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lindahl, U., Feingold, D. S., and Rodén, L. (1986) Biosynthesis of heparin. TIBS 11, 221–225.

    CAS  Google Scholar 

  2. Esko, J. D. (1991) Genetic analysis of proteoglycan structure, function and metabolism. Curr. Opin. Cell Biol. 3, 805–816.

    Article  PubMed  CAS  Google Scholar 

  3. Silbert, J. E. and Sugumaran, G. (1995) Intracellular membranes in the synthesis, transport and metabolism of proteoglycans. Biochim. Biophys. Acta. 1241, 371–384.

    PubMed  Google Scholar 

  4. Silbert, J. E. (1996) Organization of glycosaminoglycan sulfation in the biosynthesis of proteochondroitin sulfate and proteodermatan sulfate. Glycoconj. J. 13, 907–912.

    Article  PubMed  CAS  Google Scholar 

  5. Silbert, J. E., Bernfield, M., and Kokenyesi, R. (1997) Proteoglycans: a special class of glycoproteins, in Glycoproteins II (Montreuil, J., Vliegenthart, J. F. G., and Schachter, H. eds.), Elsevier, Amsterdam, pp. 1–31.

    Chapter  Google Scholar 

  6. Conrad, H. E., ed. (1998) Heparin-Binding Proteins. Academic, San Diego, CA.

    Google Scholar 

  7. Lindahl, U., Kusche-Gulberg, M., and Kjéllen, L. (1998) Regulated diversity of heparan sulfate. J. Biol. Chem. 273, 24,979–24,982.

    Article  PubMed  CAS  Google Scholar 

  8. Habuchi, H., Habuchi, O., and Kimata, K. (1998) Biosynthesis of heparan sulfate and heparin: How are the multifunctional glycosaminoglycans built up? Trends Glycosci. Glycotech. 10, 65–80.

    CAS  Google Scholar 

  9. Sugumaran, G. and Vertel, B. M. (2000) Biosynthesis of chondroitin sulfate and dermatan sulfate proteoglycans, in Oligosaccharides in chemistry and biology: A comprehensive handbook (Ernst, B., Hart, G., and Sinay, P. eds.), Wiley-VCH, Weinheim, Germany, pp. 375–394, in press.

    Google Scholar 

  10. Oegema, T. R., Kraft, E. L., Jourdian, G. W., and VanValen, T. R. (1984) Phosphorylation of chondroitin sulfate from the rat chondrosarcoma. J. Biol. Chem. 259, 1720–1726.

    PubMed  CAS  Google Scholar 

  11. Fransson, L.-Å., Silverberg, T., and Carlstedt, I. (1985) Structure of the heparan sulfateprotein inkage region: Demonstration of the sequence galactosyl-galactosyl-xylose 2-phosphate. J. Biol. Chem. 260, 14, 722–14, 726.

    CAS  Google Scholar 

  12. Sugahara, K., Yamashina, I., De Waard, P., Van Halbeek, H., and Vliegenthart, J. F. G. (1988) Structural studies on sulfated glycopeptides from the carbohydrate-protein linkage region of chondroitin 4-sulfate proteoglycans of Swarm rat chondrosarcoma: demonstration of the structure Gal(4-O-sulfate)β1-3 Galβ1-4 Xylβ1-O-Ser. J. Biol. Chem. 263, 10, 168–10, 174.

    CAS  Google Scholar 

  13. De Waard, P., Vliegenthart, J. F. G., Harada, T., and Sugahara, K. (1992) Structural studies on sulfated oligosaccharides derived from the carbohydrate-protein linkage region of chondroitin 6-sulfate proteoglycans of shark cartilage: II. Seven compounds containing 2 or 3 sulfate residues. J. Biol. Chem. 267, 6036–6043.

    PubMed  Google Scholar 

  14. Sugahara, K., Yamada, S., Yoshida, K., DeWaard, P. and Vliegenthart, J. F. G. (1992) A novel sulfated structure in the carbohydrate-protein linkage region isolated from porcine intestinal heparin. J. Biol. Chem. 267, 1528–1533.

    PubMed  CAS  Google Scholar 

  15. Silbert, J. E. and DeLuca, S. (1967) The synthesis of uridine diphosphate xylose by cellfree preparations from mouse mast cell tumors. Biochim. Biophys. Acta 141, 193–196.

    PubMed  CAS  Google Scholar 

  16. Abeijon, C., Mandon, E. C., and Hirschberg, C. B. (1997) Transporters of nucleotide sugars, nucleotide sulfate and ATP in the Golgi apparatus. TIBS 22, 203–207.

    PubMed  CAS  Google Scholar 

  17. Esko, J. D., Weinke, J. L., Taylor, W. H., Ekborg, G., Rodén, L., Anantharamaiah, G., and Gavish, A. (1987) Inhibition of chondroitin sulfate and heparan sulfate biosynthesis in Chinese hamster ovary cell mutants defective in galactosyltransferase I. J. Biol. Chem. 262, 12, 189–12, 195.

    CAS  Google Scholar 

  18. Fritz, T. A., Gabb, M. M., Wei, G., and Esko, J. D. (1994) Two N-acetylglucosaminyl transferases catalyze the biosynthesis of heparan sulfate. J. Biol. Chem. 269, 28, 808–28, 814.

    Google Scholar 

  19. Rohrmann, K., Niemann, R., and Buddecke, E. (1985) Two N-acetylgalactosaminyl-transferases are involved in the biosynthesis of chondroitin sulfate. Eur. J. Biochem. 148, 463–469.

    Article  PubMed  CAS  Google Scholar 

  20. Lind, T., Lindahl, U., and Lidholt, K. (1993) Biosynthesis of heparin/heparan sulfate: identification of a 70 kDa protein catalyzing both the D-glucuronosyl and the N-acetylglucosaminyl transferase reactions. J. Biol. Chem. 268, 20, 705–20, 708.

    CAS  Google Scholar 

  21. Malmström, A., Fransson, L.-Å., Höok, M., and Lindahl, U. (1975) Biosynthesis of dermatan sulfate: formation of L-iduronic acid residues. J. Biol. Chem. 250, 3419–3425.

    PubMed  Google Scholar 

  22. Kobayashi, M., Sugumaran, G., Liu, J., Shworak, N. W., Silbert, J. E., and Rosenberg, R. D. (1999) Molecular cloning and characterization of a human uronyl 2-sulfotransferase that sulfates iduronyl and glucuronyl residues in dermatan/chondroitin sulfate. J. Biol. Chem. 274, 10, 474–10, 480.

    CAS  Google Scholar 

  23. Wei, Z., Sweidler, S. J., Ishihara, M., Orellana, A., and Hirschberg, C. B. (1993) A single protein catalyzes both N-deactylation and N-sulfation during biosynthesis of heparan sulfate. Proc. Natl. Acad. Sci. (USA) 90, 3885–3888.

    Article  CAS  Google Scholar 

  24. Sugumaran, G. and Silbert, J. E. (1990) Relationship of sulfation to ongoing chondroitin polymerization during biosynthesis of chondroitin 4-sulfate by microsomal preparations from cultured mouse mastocytoma cells. J. Biol. Chem. 265, 18, 284–18, 288.

    CAS  Google Scholar 

  25. Vertel, B. M., Walters, L. M., Flay, N., Kearns, A. E., and Schwartz, N. B. (1993) Xylosylation is an endoplasmic reticulum to Golgi event. J. Biol. Chem. 268, 11, 105–11, 112.

    CAS  Google Scholar 

  26. Silbert, J. E. and Reppucci, A. C., Jr. (1976) Biosynthesis of chondroitin sulfate: independent addition of glucuronic acid and N-acetylgalactosamine to oligosaccharides. J. Biol. Chem. 251, 3942–3947.

    PubMed  CAS  Google Scholar 

  27. Robbins, P. W. and Lipmann, F. (1957) Isolation and identification of active sulfate. J. Biol. Chem. 229, 837–851.

    PubMed  CAS  Google Scholar 

  28. Olson, C. A., Krueger, R., and Schwartz, N. B. (1985) Deglycosylation of chondroitin sulfate proteoglycans by hydrogen fluoride in pyridine. Anal. Biochem. 146, 232–237.

    Article  PubMed  CAS  Google Scholar 

  29. Niemann, R. and Buddecke, E. (1982) Substrate specificity and regulation of activity of rat liver beta-D-glucuronidase. Hoppe Seylers Z. Physiol. Chem. 363, 591–598.

    Article  PubMed  CAS  Google Scholar 

  30. Humphries, D. E., Silbert, C. K., and Silbert, J. E. (1988) Sulphation by cultured cells: cysteine, cysteinesulphinic acid, and sulphite as sources for proteoglycan sulphate. Biochem. J. 252, 305–308.

    PubMed  CAS  Google Scholar 

  31. Linhardt, R. J., Galliher, P. M., and Cooney, C. L. (1986) Polysaccharide lyases. Appl. Biochem. Biotechnol. 12, 135–176.

    Article  PubMed  CAS  Google Scholar 

  32. Ludwigs, U., Elgavish, A., Esko, J. D., Meezan, E., and Rodén, L. (1987) Reaction of unsaturated uronic acid residues with mercuric salts. Cleavage of hyaluronic acid disaccharide 2-acetamido-2-deoxy-3-O-(β-D-gluco-4-ene-pyranosyl uronic acid)-D-glucose. Biochem. J. 245, 795–804.

    PubMed  CAS  Google Scholar 

  33. Malmstrom, A. and Aberg, L. (1982) Biosynthesis of dermatan sulphate: assay and properties of the uronosyl C-5 epimerase. Biochem. J. 201, 489–493.

    PubMed  CAS  Google Scholar 

  34. Pettersson, I. K., Kusche, M., Unger, E., Wlad, H., Nylund, L., Lindahl, U., and Kjellen, L. (1991) Biosynthesis of heparin: purification of a 110-kDa mouse mastocytoma protein required for both glucosaminyl N-deacetylation and N-sulfation. J. Biol. Chem. 266, 8044–8049.

    PubMed  CAS  Google Scholar 

  35. Silbert, J. E. (1963) Incorporation of 14C and 3H from nucleotide sugars into a polysaccharide in the presence of a cell-free preparation from mouse mast cell tumors. J. Biol. Chem. 238, 3542–3546.

    PubMed  CAS  Google Scholar 

  36. Campbell, P., Hannesson, H., Sandback, D., Roden, L., Lindahl U., and Li, J.-P. (1994) Biosynthesis of heparin/heparan sulfate: purification of the D-glucuronyl C-5 epimerase from bovine liver. J. Biol. Chem. 269, 26, 953–26, 958.

    CAS  Google Scholar 

  37. Sugumaran, G. and Silbert, J. E. (1991) Formation of two species of nascent proteochondroitin in separate loci of a microsomal preparation from chick embryo epiphyseal cartilage. Biochem. J. 277, 787–793.

    PubMed  CAS  Google Scholar 

  38. Sugumaran, G. and Silbert, J. E. (1992) Effects of detergent on the sulphation of chondroitin by cell-free preparations from chick embryo epiphyseal cartilage. Biochem. J. 285, 577–583.

    PubMed  CAS  Google Scholar 

  39. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951) Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265–275.

    PubMed  CAS  Google Scholar 

  40. Sugumaran, G., Katsman, M., and Silbert, J.E. (1998) Subcellular co-localization and potential interaction of glucuronosyl-transferases with nascent proteochondroitin sulphate at Golgi sites of chondroitin synthesis. Biochem. J. 329, 203–208.

    PubMed  CAS  Google Scholar 

  41. Silbert, J.E. (1967) Biosynthesis of heparin: IV. N-Deacetylation of a precursor glycosaminoglycan. J. Biol. Chem. 242, 5153–5157.

    PubMed  CAS  Google Scholar 

  42. Malmström, A. (1984) Biosynthesis of dermatan sulfate: II. Substrate specificity of the C-5 uronosyl epimerase. J. Biol. Chem. 259, 161–165.

    PubMed  Google Scholar 

  43. Philipson, L. H. and Schwartz, N. B. (1984) Subcellular localization of hyaluronate synthetase in oligodendroglioma cells. J. Biol. Chem. 259, 5017–5023.

    PubMed  CAS  Google Scholar 

  44. Klewes, L., Turley, E. A., and Prehm, P. (1993) The hyaluronate synthase from a eukaryotic cell line. Biochem. J. 290, 791–795.

    PubMed  CAS  Google Scholar 

  45. Prehm, P., (1983) Synthesis of hyaluronate in differentiated teratocarcinoma cells: mechanism of chain growth. Biochem. J. 211, 191–198.

    PubMed  CAS  Google Scholar 

  46. Kitagawa, H., Tanaka, Y., Tsuchida, K., Goto, F., Ogawa, T., Lidholt, K., Lindahl, U., and Sugahara, K. (1995) N-Acetylgalactosamine transfer to the common carbohydrate-protein linkage region of sulfated glycosaminoglycans: identification of UDP-GalNAc: chondrooligosaccharide α-N-acetylgalactosaminyltransferase in fetal bovine serum. J. Biol. Chem. 270, 22, 190–22, 195.

    CAS  Google Scholar 

  47. Nadanaka, S., Kitagawa, H., Fumitaka, G., Tamura, J.-I., Neumann, K. W., Ogawa, T., and Sugahara, K. (1999) Involvement of the core protein in the first β-N-acetylgalactosamine transfer to the glycosaminoglycan-protein linkage-region tetrasaccharide and in the subsequent polymerization: the critical determining step for chondroitin sulphate biosynthesis. Biochem. J. 340, 353–357.

    Article  PubMed  CAS  Google Scholar 

  48. Rodén, L., Baker, F. R., Helting, T., Schwartz, N. B., Stoolmiller, A. C., Yamagata, S., and Yamagata, T. (1972) Biosythesis of chondroitin sulfate, Meth. Enzymol. 28, 662–676.

    Google Scholar 

  49. Helting, T. and Rodén, L. (1969) Biosynthesis of chondroitin sulfate. I. Galactosyl transfer in the formation of the carbohydrate-protein linkage region. J. Biol. Chem. 244, 2790–2798.

    PubMed  CAS  Google Scholar 

  50. Faltynek, C. R., Silbert, J. E., and Hof, L. (1981) Inhibition of the action of pyrophosphatase and phosphatase on sugar nucleotides. J. Biol. Chem. 256, 7139–7141.

    PubMed  CAS  Google Scholar 

  51. Pfeffer, S. R. and Rothman, J.E. (1987) Biosynthetic protein transport and sorting by the endoplasmic reticulum and Golgi. Annu. Rev. Biochem. 56, 829–852.

    Article  PubMed  CAS  Google Scholar 

  52. Goldberg, D. E. and Kornfeld, S. (1983) Evidence for extensive subcellular organization of asparagine-linked oligosaccharide processing and lysosomal enzyme phosphorylation. J. Biol. Chem. 258, 3159–3165.

    PubMed  CAS  Google Scholar 

  53. Futerman A. H., Stieger B, Hubbard A. L., and Pagano R. E. (1990) Sphingomyelin synthesis in rat liver occurs predominantly at the cis and medial cisternae of the Golgi apparatus. J. Biol. Chem. 265, 8650–8657.

    PubMed  CAS  Google Scholar 

  54. Sugumaran, G. and Silbert, J. E. (1991) Subfractionation of chick embryo epiphyseal cartilage Golgi: localization of enzymes involved in the synthesis of the polysaccharide portion of proteochondroitin sulfate. J. Biol. Chem. 266, 9565–9569.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Sugumaran, G., Silbert, J.E. (2001). Particulate and Soluble Glycosaminoglycan-Synthesizing Enzymes. In: Iozzo, R.V. (eds) Proteoglycan Protocols. Methods in Molecular Biology™, vol 171. Humana Press. https://doi.org/10.1385/1-59259-209-0:103

Download citation

  • DOI: https://doi.org/10.1385/1-59259-209-0:103

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-759-5

  • Online ISBN: 978-1-59259-209-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics