Skip to main content

Detection of DNA Deoxyribophosphodiesterase Activity

  • Protocol
DNA Repair Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 152))

  • 510 Accesses

Abstract

The major pathway for the removal of oxidative base damage is the DNA base excision repair pathway, found in prokaryotes and eukaryotes (1). In this pathway, oxidized DNA bases are removed by specific DNA glycosylases, leaving apurinic/apyrimidinic (AP) sites in the DNA (1,2). AP sites can also arise spontaneously in DNA through depurination (3) and, being devoid of genetic information, can be both cytotoxic and mutagenic lesions (46). Several DNA glycosylases have been found that convert a variety of damaged nucleotide residues to AP sites by removing deaminated, oxidized, or alkylated bases from DNA. Uracil, either misincorporated in place of thymine or resulting from deamination of cytosine, is removed by a specific glycosylase, uracil-DNA glycosylase, found in prokaryotes and eukaryotes (1,4).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lindahl, T. (1993) Instability and decay of the primary structure of DNA. Nature 362, 709–715.

    Article  PubMed  CAS  Google Scholar 

  2. Doetsch, P. W. and Cunningham, R. P. (1990) The enzymology of apurinic/ apyrimidinic endonucleases. Mutat. Res. 236, 173–201.

    PubMed  CAS  Google Scholar 

  3. Lindahl, T. and Nyberg, B. (1972) Rate of depurination of native deoxyribonucleic acid. Biochemistry 11, 3610–3618.

    Article  PubMed  CAS  Google Scholar 

  4. Olsen, L. C., Aasland, R., Krokan H. E., and Helland D. E. (1991) Human uracil-DNA glycosylase complements E. coli ung mutants. Nucleic Acids Res. 19, 4473–4478.

    Article  CAS  Google Scholar 

  5. Loeb, L. A. (1985) Apurinic sites as mutagenic intermediates. Cell 40, 483–484.

    Article  PubMed  CAS  Google Scholar 

  6. Loeb, L. A. and Preston, B. D. (1986) Mutagenesis by apurinic/apyrimidinic sites. Annu. Rev. Genet. 20, 201–230.

    Article  PubMed  CAS  Google Scholar 

  7. Yajko, D. M. and Weiss, B. (1975) Mutations simultaneously affecting endonuclease II and exonuclease III in Escherichia coli. Proc. Natl. Acad. Sci. USA 72, 688–692.

    Article  CAS  Google Scholar 

  8. Weiss, B. (1976) Endonuclease II of Escherichia coli is exonuclease III. J. Biol. Chem. 251, 1896–1901.

    PubMed  CAS  Google Scholar 

  9. Chan, E. and Weiss, B. (1987) Endonuclease IV of Escherichia coli is induced by paraquat. Proc. Natl. Acad. Sci. USA 84, 3189–3193.

    Article  PubMed  CAS  Google Scholar 

  10. Mazumder, A., Gerlt, J. A., Absalon, M. J., et al. (1991) Stereochemical studies of the β-elimination reactions at aldehyic abasic sites in DNA: endonuclease III from Escherichia coli, sodium hydroxide, and ly-trp-lys. Biochemistry 30, 1119–1126.

    Article  PubMed  CAS  Google Scholar 

  11. Bailly, V. and Verly, W. G. (1987) Escherichia coli endonuclease III is not an endonuclease but a β-elimination catalyst. Biochem. J. 242, 565–572.

    PubMed  CAS  Google Scholar 

  12. Aspinwall, R., Rothwell, D. G., Roldan-Arjona, T., et al. (1997) Cloning and characterization of a functional human homolog of Escherichia coli endonuclease III. Proc. Natl. Acad. Sci. USA 94, 109–114.

    Article  PubMed  CAS  Google Scholar 

  13. Hilbert, T. P., Chaung, W., Boorstein, R. J., et al. (1997) Cloning and expression of the cDNA encoding the human homologue of the DNA repair enzyme, Escherichia coli endonuclease III. J. Biol. Chem. 272, 6733–6740.

    Article  PubMed  CAS  Google Scholar 

  14. Boiteux, S., O’Connor, T. R., Lederer, F., et al. (1990) Homogeneous Escherichia coli FPG protein. A DNA glycosylase which excises imidazole ring-opened purines and nicks DNA at apurinic/apyrimidinic sites. J. Biol. Chem. 265, 3916–3922.

    PubMed  CAS  Google Scholar 

  15. van der Kemp, P. A., Thomas, D., Barbey, R., et al. (1996) Cloning and expression in Escherichia coli of the OGG1 gene of Saccharomyces cerevisiae, which codes for a DNA glycosylase that excises 7,8-dihydro-8-oxoguanine and 2,6-diamino4-hydroxy-5-N methylformamidopyrimidine. Proc. Natl. Acad. Sci. USA 93, 5197–5202.

    Article  PubMed  Google Scholar 

  16. Lu, R., Nash, H. M., and Verdine, G. L. (1997) A mammalian DNA repair enzyme that excises oxidatively damaged guanines maps to a locus frequently lost in lung cancer. Curr. Biol. 7, 397–407.

    Article  PubMed  CAS  Google Scholar 

  17. Franklin, W. A. and Lindahl, T. (1988) DNA deoxyribophosphodiesterase. EMBO J. 7, 3616–3622.

    Google Scholar 

  18. Matsumoto, Y. and Kim, K. (1995) Excision of deoxyribose phosphate residues by DNA polymerase β during DNA repair. Science 269, 699–702.

    Article  PubMed  CAS  Google Scholar 

  19. Sandigursky, M. and Franklin, W. A. (1992) DNA deoxyribophosphodiesterase of Escherichia coli is associated with exonuclease I. Nucleic Acids Res. 20, 4699–4703.

    Article  PubMed  CAS  Google Scholar 

  20. Dianov, G., Sedgwick, B., Daly, G., et al. (1994) Release of 5′-terminal deoxyribose-phosphate residues from incised abasic sites in DNA by the Escherichia coli RecJ protein. Nucleic Acids Res. 22, 993–998.

    Article  PubMed  CAS  Google Scholar 

  21. Graves, R. J., Felzenszwalb, I., Laval, J., and O’Connor, T. R. (1992) Excision of 5′-terminal deoxyribose phosphate from damaged DNA is catalyzed by the Fpg protein of Escherichia coli. J. Biol. Chem. 267, 14,429–14,435.

    PubMed  CAS  Google Scholar 

  22. Price, A. and Lindahl, T. (1991) Enzymatic release of 5′-terminal deoxyribose phosphate residues from damaged DNA in human cells. Biochemistry 30, 8631–8637.

    Article  PubMed  CAS  Google Scholar 

  23. Feng, J., Crasto, C. J., and Matsumoto, Y. (1998) Deoxyribose phosphate excision by the N-terminal domain of the polymerase β: the mechanism revisited. Biochemistry 37, 9605–9611.

    Article  PubMed  CAS  Google Scholar 

  24. Sandigursky, M., Yacoub, Y., Kelley, et al. (1997) The Drosophila ribosomal protein S3 contains a DNA deoxyribophosphodieserase (dRpase) activity. J. Biol. Chem. 272, 17,480–17,484.

    Article  PubMed  CAS  Google Scholar 

  25. Sandigursky, M., Yacoub, A., Kelley, M. R., et al. (1997) The yeast 8-oxoguanine DNA glycosylase (Ogg1) contains a DNA deoxyribophosphodiesterase (dRpase) activity. Nucleic Acids Res. 25, 4557–4561.

    Article  PubMed  CAS  Google Scholar 

  26. Demple, B., Johnson, A., and Fung, D. (1986) Exonuclease III and endonuclease IV remove 3′ blocks from DNA synthesis primers in H2O2-damaged Escherichia coli. Proc. Natl. Acad. Sci. USA 83, 7731–7735.

    Article  PubMed  CAS  Google Scholar 

  27. Bernelot-Moens, C. and Demple, B. (1989) Multiple DNA repair activities for 3′deoxyribose fragments in Escherichia coli. Nucleic Acids Res. 17, 587–600.

    Article  PubMed  CAS  Google Scholar 

  28. Shafritz, K. M., Sandigursky, M., and Franklin, W. A. (1998) Exonuclease IX of Escherichia coli. Nucleic Acids Res. 26, 2593–2597.

    Article  PubMed  CAS  Google Scholar 

  29. Popoff, S. C., Spira, A. I., Johnson, A. W., and Demple, B. (1990) Yeast structural gene (APN1) for the major apurinic endonuclease: homology to Escherichia coli endonuclease IV. Proc. Natl. Acad. Sci. USA 87, 4193–4197.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Humana Press Inc.

About this protocol

Cite this protocol

Sandigursky, M., Franklin, W.A. (2000). Detection of DNA Deoxyribophosphodiesterase Activity. In: Vaughan, P. (eds) DNA Repair Protocols. Methods in Molecular Biology™, vol 152. Humana Press. https://doi.org/10.1385/1-59259-068-3:39

Download citation

  • DOI: https://doi.org/10.1385/1-59259-068-3:39

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-643-7

  • Online ISBN: 978-1-59259-068-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics