Skip to main content

Repair of A/G and A/8-oxoG Mismatches by MutY Adenine DNA Glycosylase

  • Protocol
DNA Repair Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 152))

Abstract

Cellular and organism aging have been correlated with accumulated DNA damage (1,2). 8-oxo-7,8-dihydrodeoxyguanine (8-oxoG or GO) is one of the most stable products of oxidative DNA damage. The formation of GO in DNA, if not repaired, can lead to misincorporation of A opposite to the GO lesion and result in G:C to T:A transversions (36). In Escherichia coli, a family of enzymes, MutY, MutM, and MutT, is involved in defending against the mutagenic effects of GO lesions (79). The E. coli MutY is an adenine glycosylase active on DNA containing A/GO, A/G, and A/C mismatches (7,1015) and also has a weak guanine glycosylase activity on G/GO-containing DNA (15a,15b). MutY removes misincorporated adenines paired with GO lesions and reduces the GO mutational effects. The 39-kDa MutY protein from E. coli is an ironsulfur protein. The MutY protein was shown by Tsai-Wu et al. (16) to have both DNA glycosylase and apurinic/apyrimidinic (AP) lyase activities. Recent results show that MutY and the N-terminal catalytic domain can be trapped in a stable covalent enzyme-DNA intermediate in the presence of sodium borohydride (1719) and support that MutY contains both DNA glycosylase and AP lyase activities. The DNA glycosylase activity removes the adenine bases from the A/GO, A/G, and A/C mismatches (16) and the AP lyase activity cleaves the first phosphodiester bond 3′ to the AP site (12,16). Apparent dissociation constants are 0.066, 5.3, and 15 nM for A/GO-, A/G-, and A/Ccontaining DNA, respectively (20).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ames, B. N. and Gold, L. S. (1991) Endogenous mutagens and the causes of aging and cancer. Mutat. Res. 250, 3–16.

    Article  PubMed  CAS  Google Scholar 

  2. Kasai, H. and Nishimura, S. (1991) Formation of 8-hydroxyguanine in DNA by oxygen radicals and its biological significance, in Oxidative stress: oxidants and antioxidants (Sies H., ed.), Academic, London, pp. 99–116.

    Google Scholar 

  3. Moriya, M. (1993) Single-stranded shuttle phagemid for mutagenesis studies in mammalian cells: 8-Oxoguanine in DNA induces targeted G.C to T.A transversions in simian kidney cells. Proc. Natl. Acad. Sci. USA 90, 1122–112

    Article  PubMed  CAS  Google Scholar 

  4. Moriya, M., Ou, C., Bodepudi, V., et al. (1991) Site-specific mutagenesis using a gapped duplex vector: a study of translesion synthesis past 8-oxodeoxyguanosine in Escherichia coli. Mutat. Res. 254, 281–288.

    PubMed  CAS  Google Scholar 

  5. Wood, M. L., Dizdaroglu, M., Gajewski, E., and Essigmann, J. M. (1990) Mechanistic studies of ionizing radiation and oxidative mutagenesis: genetic effects of single 8-hydroxyguanine (7-hydro-8-oxoguanine) residue inserted at a unique site in a viral genome. Biochemistry 29, 7024–7032.

    Article  PubMed  CAS  Google Scholar 

  6. Cheng, K. C., Cahill, D. S., Kasai, H., et al. (1991) 8-Hydroxyguanine, an abundant form of oxidative DNA damage, causes G-T and A-C substitutions. J. Biol. Chem. 267, 166–172.

    Google Scholar 

  7. Michaels, M. L. and Miller, J. H. (1992) The GO system protects organisms from the mutagenic effect of the spontaneous lesion 8-hydroxyguanine (7,8-dihydro-8-oxo-guanine). J. Bacteriol. 174, 6321–6325.

    PubMed  CAS  Google Scholar 

  8. Tchou, J. and Grollman, A. P. (1993) Repair of DNA containing the oxidatively-damaged base 8-hydroxyguanine. Mutat. Res. 299, 277–287.

    Article  PubMed  CAS  Google Scholar 

  9. Tajiri, T., Maki, H., and Sekiguchi, M. (1995) Functional cooperation of MutT, MutM and MutY proteins in preventing mutations caused by spontaneous oxidation of guanine nucleotide in yEscherichia coli. Mutat. Res. 336, 257–267.

    PubMed  CAS  Google Scholar 

  10. Au, K. G., Cabrera, M., Miller, J. H., and Modrich, P. (1988) Escherichia coli mutY gene product is required for specific A/G to C:G mismatch correction. Proc. Natl. Acad. Sci. USA 85, 9163–9166.

    Article  PubMed  CAS  Google Scholar 

  11. Lu, A-L. and Chang, D.-Y. (1988) Repair of single base pair transversion mismatches of Escherichia coli in vitro: correction of certain A/G mismatch is independent of dam methylation and host mutHLS gene functions. Genetics 118, 593–600.

    PubMed  CAS  Google Scholar 

  12. Lu, A-L. and Chang, D.-Y. (1988) A novel nucleotide excision repair for the conversion of an A/G mismatch to C/G base pair in E. coli. Cell 54, 805–812.

    Article  PubMed  CAS  Google Scholar 

  13. Michaels, M. L., Cruz, C., Grollman, A. P., and Miller, J. H. (1992) Evidence that MutM and MutY combine to prevent mutations by an oxidatively damaged form of guanine in DNA. Proc. Natl. Acad. Sci. USA 89, 7022–7025.

    Article  PubMed  CAS  Google Scholar 

  14. Radicella, J. P., Clark, E. A., and Fox, M. S. (1988) Some mismatch repair activities in Escherichia coli. Proc. Natl. Acad. Sci. USA 85, 9674–9678.

    Article  PubMed  CAS  Google Scholar 

  15. Su, S.-S., Lahue, R. S., Au, K. G., and Modrich, P. (1988) Mispair specificity of methyl-directed DNA mismatch correction in vitro. J. Biol. Chem. 263, 6829–6835.

    PubMed  CAS  Google Scholar 

  16. Li, X., Wright, P. M., and Lu, A.-L. (2000) The C-terminal domain of MutY glycosylase determines the 7,8-dihydro-8-oxo-guanine specificity and is crucial for mutation avoidance. J. Biol. Chem., in press.

    Google Scholar 

  17. Zhang, Q.-M., Ishikawa, N., Nakahara, T., and Yonei, S. (1998) Escherichia coli MutY protein has a guanine-DNA glycosylase that acts on 7,8-dihydro-8-oxoguanine:guanine mispair to prevent spontaneous G:C to C:G transversions. Nucelic Acids Res. 26, 4669–4675.

    Article  CAS  Google Scholar 

  18. Tsai-Wu, J.-J., Liu, H.-F., and Lu, A-L. (1992) Escherichia coli MutY protein has both N-glycosylase and apurinic/apyrimidinic endonuclease activities on A.C and A.G mispairs. Proc. Natl. Acad. Sci. USA 89, 8779–8783.

    Article  PubMed  CAS  Google Scholar 

  19. Lu, A-L., Yuen, D. S., and Cillo, J. (1996) Catalytic mechanism and DNA substrate recognition of Escherichia coli MutY protein. J. Biol. Chem. 27, 24,138–24,143.

    Google Scholar 

  20. Manuel, R. C. and Lloyd, R. S. (1997) Cloning, overexpression, and biochemical characterization of the catalytic domain of MutY. Biochemistry 36, 11,140–11,152.

    Article  PubMed  CAS  Google Scholar 

  21. Gogos, A., Cillo, J., Clarke, N. D., and Lu, A-L. (1996) Specific recognition of A/G and A/8-oxoG mismatches by Escherichia coli MutY: removal of the C-terminal domain preferentially affects A/8-oxoG recognition. Biochemistry 35, 16,665–16,671.

    Article  PubMed  CAS  Google Scholar 

  22. Lu, A-L., Tsai-W, J.-J., and Cillo, J. (1995) DNA determinants and substrate specificities of Escherichia coli MutY. J. Biol. Chem. 270, 23,582–23,588.

    Article  PubMed  CAS  Google Scholar 

  23. Yeh, Y.-C., Chang, D.-Y., Masin, J., and Lu, A-L. (1991) Two nicking enzymes systems specific for mismatch-containing DNA in nuclear extracts from human cells. J. Biol. Chem. 266, 6480–6484.

    PubMed  CAS  Google Scholar 

  24. McGoldrick, J. P., Yeh, Y.-C., Solomon, M., Essigmann, J. M., and Lu, A.-L. (1995) Characterization of a mammalian homolog of the Escherichia coli MutY mismatch repair protein. Mol. Cell. Biol. 15, 989–996.

    PubMed  CAS  Google Scholar 

  25. Lu, A-L. and Fawcet, W. P. (1998) Characterization of the recombinant MutY homolog, an adenine DNA glycosylase, from Schizosacchromyces pombe. J. Biol. Chem. 273, 25,098–25,105.

    Article  PubMed  CAS  Google Scholar 

  26. Slupska, M. M., Baikalov, C., Luther, W. M., Chiang, J.-H., Wei, Y.-F., and J. H. Miller. (1996) Cloning and sequencing a human homolog (hMYH) of the Escherichia coli mutY gene whose function is required for the repair of oxidative DNA damage. J. Bacteriol. 178, 3885–3892.

    PubMed  CAS  Google Scholar 

  27. Slupska, M. M., Luther, W. M., Chiang, J. H., Yang, H., and Miller, J. H. (1999) Functional expression of hMYH, a human homolog of the Escherichia coli MutY protein. J. Bacteriol. 181, 6210–6213.

    PubMed  CAS  Google Scholar 

  28. Takao, M., Zhang, Q. M., Yonei, S., and Yasui, A. (1999) Differential subcellular localization of human MutY homolog (hMYH) and the functional activity of adenine:8-oxoguanine DNA glycosylase. Nucleic Acids Res. 27, 3638–3644.

    Article  PubMed  CAS  Google Scholar 

  29. Tsai-Wu, J.-J., Su, H.-T., Wu, Y.-L., Hsu, S.-M., and Wu, C. H. H. (2000) Nuclear localization of the human MutY homologue hMYH. J. Cell. Biochem., in press.

    Google Scholar 

  30. Lu, A-L. and Hsu, I. C. (1992) Detection of single DNA base mutations with mismatch repair enzymes. Genomics 14, 249–255.

    Article  PubMed  CAS  Google Scholar 

  31. Hsu, I.-C., Yang, Q. P., Kahng, Y. W., and Xu, J.-F. (1994) Detection of DNA point mutations with DNA mismatch repair enzymes. Carcinogenesis 15, 1657–1662.

    Article  PubMed  CAS  Google Scholar 

  32. Maxam, A. M. and Gilbert, W. (1980) Sequenceing end-labelled DNA with base-specific chemical cleavage. Methods Enzymol. 65, 499–560.

    Article  PubMed  CAS  Google Scholar 

  33. Bradford, M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254.

    Article  PubMed  CAS  Google Scholar 

  34. Leatherbarrow, R. J. (1987) Enzfitter: A Non-linear Regression Analysis Program for IBM PC, Elsevier Science, Amsterdam.

    Google Scholar 

  35. Laemmli, U. K. (1970) Cleavage of structural protein during the assembly of the head of bacteriophage T4. Nature 227, 680–685.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Humana Press Inc.

About this protocol

Cite this protocol

Lu, AL. (2000). Repair of A/G and A/8-oxoG Mismatches by MutY Adenine DNA Glycosylase. In: Vaughan, P. (eds) DNA Repair Protocols. Methods in Molecular Biology™, vol 152. Humana Press. https://doi.org/10.1385/1-59259-068-3:3

Download citation

  • DOI: https://doi.org/10.1385/1-59259-068-3:3

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-643-7

  • Online ISBN: 978-1-59259-068-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics