Skip to main content

Probing Protein-Protein Interactions with Mass Spectrometry

  • Protocol
Mass Spectrometry of Proteins and Peptides

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 146))

  • 1900 Accesses

Abstract

Protease mapping is an established method for probing the primary structure of proteins (1,2) and has traditionally been performed through the use of chromatography and/or gel electrophoresis techniques in combination with Edman degradation NH2-terminal sequencing (3). More recently, mass spectrometry has been combined with protease mapping to perform “protein mass mapping.” Definitively, protein mass mapping combines enzymatic digestion, mass spectrometry, and computer-facilitated data analysis to examine proteolytic fragments for protein structure determination. Protein mass mapping permits the identification of protein primary structure by applying sequence specific proteases and performing mass analysis on the resulting proteolytic fragments, thus yielding information on fragment masses with accuracy approaching ±5 ppm, or ±0.005 Daltons for a 1000 Daltons peptide. The protease fragmentation pattern is then compared with the patterns predicted for all proteins within a database, and matches are statistically evaluated. Since the occurrence of Arg and Lys residues in proteins is statistically high, trypsin cleavage (specific for Arg and Lys) generally produces a large number of fragments, which, in turn, offer a reasonable probability for unambiguously identifying the target protein. The success of this strategy relies on the existence of the protein sequence within the database, but with the sequences of whole genomes for several organisms now complete (Escherichia coli, Bacillus subtilis, and Archaeoglobus fulgidus) and others approaching completion (Saccharomyces cerevisiae, Saccaramyces pombe, Homo sapiens, Drosophila melanogaster, and so forth), the likelihood for matches is reasonably high.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fontana A., Fassina G., Vita C., Dalzoppo D., Zamai M., and Zambonin M. (1986) Correlation between sites of limited proteolysis and segmental mobility in thermolysin. Biochemistry 25, 1847–1851.

    Article  PubMed  CAS  Google Scholar 

  2. Hubbard S. J., Eisenmenger F., and Thornton J. M. (1994) Modeling studies of the change in conformation required for cleavage of limited proteolytic sites. Protein Sci. 3, 757–768.

    Article  PubMed  CAS  Google Scholar 

  3. Edman P. and Begg G. (1967) A protein sequenator. Eur. J. Biochem. 1, 80–91.

    Article  PubMed  CAS  Google Scholar 

  4. Kriwacki R. W., Wu J., Siuzdak G., and Wright P. E. (1996) Probing proteinprotein interactions by mass spectrometry: analysis of the p21/Cdk2 complex. J. Am. Chem. Soc. 118, 5320.

    Article  CAS  Google Scholar 

  5. Kriwacki R. W., Wu J., Tennant T., Wright P. E., and Siuzdak, G. (1997) Probing protein structure using biochemical and biophysical methods: proteolysis, MALDI mass analysis, HPLC, and gel-filtration chromatography of p21Waf1/ Cip1/Sdil. J. Chromatogr. 777, 23–30.

    Article  CAS  Google Scholar 

  6. Fontana A., Zambonin M., Polverino de Laureto P., De Filippis V., Clementi A., and Scaramella E. (1997) Probing the conformational state of apomyoglobin by limited proteolysis. J. Mol. Biol. 266, 223–230.

    Article  PubMed  CAS  Google Scholar 

  7. Fontana A., Polverino de Laureto P., De Filippis V., Scaramella E., and Zambonin M. (1997) Probing the partly folded states of proteins by limited proteolysis. FoldDes. 2, R17–26.

    Article  CAS  Google Scholar 

  8. Cohen S. L., Ferre-D’Amare A. R., Burley S. K., and Chait B. T. (1995) Probing the solution structure of the DNA-binding protein Max by a combination of proteolysis and mass spectrometry. Protein Sci. 4, 1088–1099.

    Article  PubMed  CAS  Google Scholar 

  9. Kriwacki R. W., Hengst L., Tennant L., Reed S. I., and Wright P. E. (1996) Structural studies of p21Waf1/Cip1/Sdil in the free and Cdk2-bound state: conformational disorder mediates binding diversity. Proc. Natl. Acad. Sci. USA 93, 11,504–11,509.

    Article  PubMed  CAS  Google Scholar 

  10. Neidhardt F. C., Bloch P. F., and Smith D. F. (1974) Culture medium for enterobacteria. J. Bacteriol. 119, 736–747.

    PubMed  CAS  Google Scholar 

  11. De Bondt H. L., Rosenblatt J., Jones H. D., Morgan D. O., and Kim S. (1993) Crystal structure of cyclin-dependent kinase 2. Nature 363, 595–602.

    Article  PubMed  Google Scholar 

  12. Harper J. W., Adami G. R., Wei N., Keyomarsi K., and Elledge S. J. (1993) The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 75, 805–816.

    Article  PubMed  CAS  Google Scholar 

  13. El-Deiry W. S., Tokino T., Velculescu V. E., Levy D. B., Lin D., Mercer W. E., et al. (1993) WAF1, a potential mediator of p53 tumor suppression. Cell 75, 817–825.

    Article  PubMed  CAS  Google Scholar 

  14. Toyoshima H. and Hunter T. (1994) p27, a novel inhibitor of G1 cyclin-Cdk protein kinase activity, is related to p21. Cell 78, 67–74.

    Article  PubMed  CAS  Google Scholar 

  15. Polyak K., Lee M., Erdjument-Bromage H., Koff A., Roberts J. M., Tempst P., et al. (1994) Cloning of p27Kip1, a cyclin-dependent kinase inhibitor and a potential mediator of extracellular antimitogenic signals. Cell 78, 59–66.

    Article  PubMed  CAS  Google Scholar 

  16. Lee M.-H., Reynisdottir I., and Massagué J. (1995) Cloning of p57KIP2, a cyclin-dependent kinase inhibitor with unique domain structure and tissue distribution. Genes and Dev. 9, 639–649.

    Article  PubMed  CAS  Google Scholar 

  17. Matsuoka S., Edwards M. C., Bai C., Parker S., Zhang P. B., A., Harper W. J., and Elledge S. (1995) ppp57KIP2, a structurally distinct member of the p21CIP1 Cdk inhibitor family, is a candidate tumor suppressor gene. Genes Dev. 9, 650–662.

    Article  PubMed  CAS  Google Scholar 

  18. Nakanishi M., Robetorye R. S., Adami G. R., Pereira-Smith O. M., and Smith J. R. (1995) Identification of the active region of the DNA synthesis inhibitory gene p21Sdil/CIP1/WAF1. EMBO J. 14, 555–563.

    PubMed  CAS  Google Scholar 

  19. Chen J., Jackson P. K., Kirschner M. W., and Dutta A. (1995) Separate domains of p21 involved in the inhibition of Cdk kinase and PCNA. Nature 374, 386–388.

    Article  PubMed  CAS  Google Scholar 

  20. Luo Y., Hurwitz J., and Massagué J. (1995) Cell-cycle inhibition by independent CDK and PCNA binding domains in p21Cip1. Nature 375, 159–161.

    Article  PubMed  CAS  Google Scholar 

  21. Russo A. A., Jeffrey P. D., Patten A. K., Massague J., and Pavletich N. P. (1996) Crystal structure of the p27Kip1 cyclin-dependent-kinase inhibitor bound to the cyclin A-Cdk2 complex. Nature 382, 325–331.

    Article  PubMed  CAS  Google Scholar 

  22. Bothner B., Dong X.-F., Bibbs L., Johnson J. E., and Siuzdak G. (1998) Evidence of Viral Capsid Dynamics Using Limited Proteolysis and Mass Spectrometry. J. Biol. Chem. 273, 673–676.

    Article  PubMed  CAS  Google Scholar 

  23. Lewis J. K., Bothner B., Smith T. J., and Siuzdak G. (1998) Antiviral Agent Blocks Breathing of Common Cold Virus. Proc. Natl. Acad. Sci. USA 95, 6774–6778.

    Article  PubMed  CAS  Google Scholar 

  24. Siuzdak G., Bothner B., Yeager M., Brugidou C., Fauquet C. M., Hoey, K., et al. (1996) Mass spectrometry and viral analysis. Chem. Biol. 3, 45–48.

    Article  PubMed  CAS  Google Scholar 

  25. Siuzdak G. (1998) Probing viruses with mass spectrometry. J. Mass Spectrom. 33, 203–211.

    Article  PubMed  CAS  Google Scholar 

  26. Gorman J. J., Ferguson B. L., Speelman D., and Mills J. (1997) Determination of the disulfide bond arrangement of human respiratory syncytial virus attachment (G) protein by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Protein Sci. 6, 1308–1315.

    Article  PubMed  CAS  Google Scholar 

  27. Gorman J. J. (1992) Mapping of post-translational modifications of viral proteins by mass spectrometry. Trac-Trends Anal. Chem. 11, 96–105.

    Article  CAS  Google Scholar 

  28. Rossmann M. G., Smith T. J., and Rueckert R. R. (1993) The structure of human rhinovirus 14. Structure Intro Issue xxiv–xxv.

    Google Scholar 

  29. Spencer S. M., Sgro J. Y., Dryden K. A., and Baker, M. L. J. Struct. Biol. 120, 11–21.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Humana Press Inc.

About this protocol

Cite this protocol

W. Kriwacki, R., Siuzdak, G. (2000). Probing Protein-Protein Interactions with Mass Spectrometry. In: Chapman, J.R. (eds) Mass Spectrometry of Proteins and Peptides. Methods in Molecular Biology™, vol 146. Humana Press, Totowa, NJ. https://doi.org/10.1385/1-59259-045-4:223

Download citation

  • DOI: https://doi.org/10.1385/1-59259-045-4:223

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-0-89603-609-3

  • Online ISBN: 978-1-59259-045-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics