Skip to main content

Biosensors based on DNA intercalation using light polarization

  • Protocol
Affinity Biosensors

Part of the book series: Methods in Biotechnology ((MIBT,volume 7))

Abstract

The intercalation of polyaromatic compounds by DNA can serve as a basis for a simple and sensitive method for detection and quantification of carcinogens. The experimental technique is based on monitoring the decrease of polarization, caused by the displacement of an intercalated fluorescent dye molecule by the analyte molecule (carcinogen). The magnitude of the polarization decrease is proportional to the concentration of the analyte.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Michaelis, L. (1947) The nature of the interaction of nucleic acids and nuclei with basic dyestuffs. Cold Sprzng Harb. Symp Quant. Biol. 12, 131–142.

    CAS  Google Scholar 

  2. Peacock, R. A. and Skerrett, J. N. H. (1956) The interaction of aminoacridines with nucleic acids. Trans Faraday Soc. 52, 261–279

    Article  Google Scholar 

  3. Bresloff,.I. L. and Crothers, D. M. (1981) Equilibrium studies of ethidium-poly-nucleotide interactions. Biochemistry 20, 3547–3553.

    Article  PubMed  CAS  Google Scholar 

  4. Scatchard, G. (1949) The attractions of proteins for small molecules and ions Ann. NY Acad. Sci. 51, 600–672.

    Article  Google Scholar 

  5. Cavalier, L. F., Rosoff, M., and Rosenberg, B. H. (1956) Studies on the structure of nucleic acids. X. On the mechanism of denaturation. J. Amer. Chem. Soc. 78, 5239–5247.

    Article  Google Scholar 

  6. Wilson, W. D and Jones, R. L. (1982) Intercalation in biological systems, in Intercalatzon Chemistry (Whittingham, M. S and Jacobson, A J, eds.), Academic, New York, pp. 445–501.

    Google Scholar 

  7. Richardson, C L and Schulman, G E. (1981) Competitive binding studies of compounds that interact with DNA utilizing fluorescence polarization. Biochim Biophys Acta 652, 55–63

    PubMed  CAS  Google Scholar 

  8. Shahbaz, M., Harvey, R G., Prakash, A. S., Boal, T. R., Zegar, I. S., and LeBreton, P. R. (1983) Fluorescence and photoelection studies of the intercalative binding of benz[a]anthracene metabolite models to DNA. Biochem. Biophys. Res Comm 112, 1–7.

    Article  PubMed  CAS  Google Scholar 

  9. Zegar, I S., Prakash, A. S., and LeBreton, P. R. (1984) Intercalative DNA binding of model compounds derived from metabolites of 7,12-dimethylbenz[a]anthracene. J. Biomol Struct Dyn. 2, 531–542

    PubMed  CAS  Google Scholar 

  10. LeBreton, P. R. (1985) The mtercalation of benzo[a]pyrene and 7,12-dimethylbenz[a]anthracene metabohtes and metabolic model compounds into DNA, in Polycyclic Hydrocarbons and Carcinogenesis, Symposium Series 283, American Chemical Society, Washington, DC, 209–238.

    Chapter  Google Scholar 

  11. Dinesen, J., Jacobson, J. P., Hansen, F. P., Pedersen, E. B., and Eggert, H. (1990) DNA intercalatmg properties of tetrahydro-9-ammoacridines. Synthesis and 23 Na NMR spin-lattice relaxation time measurements J. Med Chem 33, 93–97.

    Article  PubMed  CAS  Google Scholar 

  12. Nordmeier, E. J. (1992) Ethidium bromide binding to calf thymus DNA: imphcations for outside binding and intercalation. J Phys Chem. 96, 6045–6055

    Article  CAS  Google Scholar 

  13. Neidle, N., Pearl, L. H., Herzyk, P., and Berman, H. M. (1989) A molecular model for proflavine-DNA intercalation. Nucleic Acids Res. 16, 8999–9016.

    Article  Google Scholar 

  14. Zimmerman, S. C., Lamberson, C. R, Cory, M., and Fairley, T A (1989) Topologically constrained bifunctional intercalators: DNA intercalation by a macrocyclic bisacridine. J Amer Chem. Soc. 111, 6805–6809.

    Article  CAS  Google Scholar 

  15. Tanious, F. A., Veal, J M., Buczak, H., Ratmeyer, L. S., and Wilson, W. D. (1992) DAPI (4′,6-Diarmdion-2-phenylindole) binds differently to DNA and RNA: minor-groove binding at AT sites and intercalation at AU sites. Biochemzstry 31, 3103–3112.

    Article  CAS  Google Scholar 

  16. Lerman, L. S. (1962) The structure of the DNA-acridine complex Proc Natl Acad.Sci USA 49, 94–101.

    Article  Google Scholar 

  17. Lerman, L. S. (1964) Acridine mutagens and DNA structure J Cell. Comp Physiol 64(Suppl. l), 1–18.

    Article  CAS  Google Scholar 

  18. Kapuscinski, J. and Darzynkiewics, Z. (1987) Interactions of acridine orange with double stranded nucleic acids. Spectral and affinity studies. J Biomol. Struct. Dyn 5, 127–143.

    PubMed  CAS  Google Scholar 

  19. McFadyen, W. D., Sotirellis, N., Denny, W. A., and Waklm, L. P G. (1990) The interaction of substituted and rigidly linked diquinolmes with DNA. Biochem Biophys. Acta 1048, 50–58.

    PubMed  CAS  Google Scholar 

  20. Wilson, W. D., Tamous, F. A., Barton, H. J., Strekowski, L., Boykin, D. W., and Jones, R. L. (1989) Binding of 4′,6-diamino-2-phenylmdole (DAPI) to GC and mixed sequences in DNA: intercalation of a classical groove-binding molecule J.Amer Chem Soc. 111, 5008–5010.

    Article  CAS  Google Scholar 

  21. Harvey, R. G. and Geacmtov, N. E. (1988) Intercalation and binding of carcinogenie hydrocarbon metabolites to nucleic acrds. Acc Chem Res 21, 66–73.

    Article  CAS  Google Scholar 

  22. Kim, S. K., Geacmtov, N. E., Brenner, H. C., and Harvey, R. G. (1989) Identification of conformationally different binding sites in benzo[a]pyrene diol epoxide-DNA adducts by low-temperature fluorescence spectroscopy. Carcznogenisis 10, 1333–1335.

    Article  CAS  Google Scholar 

  23. Richardson, C. L and Schulman, G. E. (1981) Intercalation inhibition assay for compounds that interact with DNA or RNA, United States patent #4,257,774; March 24.

    Google Scholar 

  24. Gibco B. R. L. (1991) Catalogue and Reference Guide, Life Technologres, Inc., Gaithersburg, MD.

    Google Scholar 

  25. Lakowicz, J R. (1984) Principles of Fluorescence Spectroscopy Plenum, New York, pp. 111–131.

    Google Scholar 

  26. Menzie, C. A., Potocki, B B., and Santodonato, J (1992) Exposure to carcinogenic PAH’s in the environment. Environ. Sci. Technol. 26, 1278–1284.

    Article  CAS  Google Scholar 

  27. Yang, Y. and Baumann, W. (1995) Seasonal and area1 variations of polycyclic aromatic hydrocarbon concentrations in street dust determined by supercritical fluid extraction and gas chromatography-mass spectrometry Analyst 120, 243–248

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Horvath, J.J. (1998). Biosensors based on DNA intercalation using light polarization. In: Rogers, K.R., Mulchandani, A. (eds) Affinity Biosensors. Methods in Biotechnology, vol 7. Humana Press. https://doi.org/10.1385/0-89603-539-5:161

Download citation

  • DOI: https://doi.org/10.1385/0-89603-539-5:161

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-539-3

  • Online ISBN: 978-1-59259-485-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics