Skip to main content

The Genetic Basis of Microbial Resistance to Antimicrobial Peptides

  • Protocol
Antibacterial Peptide Protocols

Part of the book series: Methods In Molecular Biology™ ((MIMB,volume 78))

  • 1969 Accesses

Abstract

Small cationic peptides with antibiotic properties have been isolated from a diverse array of evolutionarily divergent organisms, including insects, amphibians, mammals, and plants. They contribute to the innate immunity of the host by fending off opportunistic (i.e., environmental) microorganisms. Moreover, antimicrobial peptides present a chemical barrier early in infection before the mammalian host induces the specific type of immune response constituted by antibodies and T cells (1,2). Microorganisms have coexisted with their animal hosts for millions of years and have, in turn, evolved strategies that enable them to avoid or withstand the various microbicidal activities of the host (3). For example, the mammalian pathogen Salmonella typhimurium has several genes that confer resistance to host defense peptides, presumably allowing it to successfully colonize host tissues that are rich in antimicrobial peptides. The demonstration that mutants of S. typhimurium that are hypersusceptible to the killing effects of host-defense peptides are attenuated for virulence in mice has established that resistance to small cationic peptides is a virulence property of Salmonella (4) and, potentially, of other enteric pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zasloff, M. (1992) Antibiotic peptides as mediators of innate immunity. Curr Opin. Immunol. 4, 3–7.

    Article  PubMed  CAS  Google Scholar 

  2. Boman, H. G. (1995) Peptide antibiotics and their role in innate immunity. Annu Rev. Immunol. 13, 61–92.

    Article  PubMed  CAS  Google Scholar 

  3. Groisman, E. A. (1994) How bacteria resist killing by host-defense peptides. Trends Microbiol. 2, 444–449.

    Article  PubMed  CAS  Google Scholar 

  4. Grossman, E. A., Parra, C. A., Salcedo, M., Lipps, C. J., and Heffron, F. (1992) Resistance to host antimicrobial peptides is necessary for Salmonella virulence. Proc. Natl. Acad Sci. USA. 89, 11,939–11,943.

    Article  Google Scholar 

  5. Christensen, B., Fink, J., Merrifield, R. B., and Mauzerall, D. (1988) Channel-forming properties of cecropins and related model compounds incorporated into planar lipid membranes. Proc. Natl. Acad Sci. USA 85, 5072–5076.

    Article  PubMed  CAS  Google Scholar 

  6. Kagan, B. L., Selsted, M. E., Ganz, T., and Lehrer, R. I. (1990) Antimicrobial defensin peptides form voltage-dependent ion-permeable channels in planar lipid bilayer membranes. Proc. Natl. Acad. Sci. USA 87, 210–214.

    Article  PubMed  CAS  Google Scholar 

  7. Cruciani, R. A., Barker, J. L., Zasloff, M., Chen, H. C., and Colamonici, O. (1991). Antibiotic magainins exert cytolytic activity against transformed cell lines trough channel formation. Proc. Natl. Acad. Sci. USA 88, 3792–3796.

    Article  PubMed  CAS  Google Scholar 

  8. Cociancich, S., Ghazi, A., Hetru, C., Hoffmann, J. A., and Letelher, L. (1993) Insect defensin, an inducible antibacterial peptide forms votage-dependent channels in MIcrococcus luteus J. Biol. Chem. 268, 19,239–19,245.

    PubMed  CAS  Google Scholar 

  9. Lehrer, R. I., Barton, A., Daher, K. A., Harwig, S. S., Ganz, T., and Selsted, M. E. (1989) Interaction of human defensins with Escherichia coli, Mechanism of bactericidal activity J. Clin. Invest. 84, 553–61.

    Article  PubMed  CAS  Google Scholar 

  10. Garcia Véscovi, E., Soncini, F. C., and Groisman, E. A. (1996) Mg2+ as an extracellular signal: environmental regulation of Salmonella virulence Cell 84, 165–174.

    Article  PubMed  Google Scholar 

  11. Leyer, G. J., and Johnson, E. A. (1993) Acid adaptation induces cross-protection against environmental stresses in Salmonella typhimurium Appl. Environ. Microbiol. 59, 1842–1847.

    CAS  Google Scholar 

  12. Foster, J. W., and Spector, M. P. (1995) How Salmonella survive against the odds Annu. Rev. Microbiol. 49, 145–174.

    Article  PubMed  CAS  Google Scholar 

  13. Miller, J. H., ed. (1991) Bacterial Genetic Systems Methods in Enzymology Academic, San Diego.

    Google Scholar 

  14. Mäkela, P. H., Sarvas, M., Calagno, S., and Lounatmaa, K. (1978) Isolation and characterization of polymyxin-resistant mutants of Salmonella FEMS Microbiol 3, 323–326.

    Google Scholar 

  15. Roland, K. L., Martin, L. E., Esther, C. R., and Spitznagel, J. K. (1993) Spontaneous pmrA mutants of Salmonella typhimurium LT2 define a new-two-component regulatory system with a possible role in virulence. J. Bacteriol. 175,4154–4164.

    PubMed  CAS  Google Scholar 

  16. Roland, K. L., Esther, C. R., and Spitznagel, J. K. (1994) Isolation and characterization of a gene, pmrD, from Salmonella typhimurium that confers resistance to polymyxin when expressed in multiple copies J. Bacteriol. 176, 3589–3597.

    PubMed  CAS  Google Scholar 

  17. Parra-Lopez, C., Baer, M. T., and Groisman, E. A. (1993) Molecular genetic analysis of a locus required for resistance to antimicrobial peptides in Salmonella typhimurium. EMBO. J. 12, 4053–4062.

    PubMed  CAS  Google Scholar 

  18. Parra-Lopez, C., Lin, R., Aspedon, A., and Groisman, E. A. (1994) A Salmonella protein that is required for resistance to antimicrobial peptides and transport of potassium EMBO J 13, 3964–3972.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Humana Press Inc.

About this protocol

Cite this protocol

Groisman, E.A., Aspedon, A. (1997). The Genetic Basis of Microbial Resistance to Antimicrobial Peptides. In: Shafer, W.M. (eds) Antibacterial Peptide Protocols. Methods In Molecular Biology™, vol 78. Humana Press. https://doi.org/10.1385/0-89603-408-9:205

Download citation

  • DOI: https://doi.org/10.1385/0-89603-408-9:205

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-408-2

  • Online ISBN: 978-1-59259-564-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics