Skip to main content

Origins and Development of Peptide Antibiotic Research

From Extracts to Abstracts to Contracts

  • Protocol
Antibacterial Peptide Protocols

Part of the book series: Methods In Molecular Biology™ ((MIMB,volume 78))

Abstract

Peptide antibiotic research, which in the larger sense includes protein antibiotic research, actually began during the late 19th century with the work of Ehrlich, Metchnikov, Kanthack, and Petterson. Now it has been absorbed into the fields of microbiology, immunology, histochemistry, and cell biology. This early work depended on instruments, reagents, and techniques then at the cutting edge but now long since superseded: the compound microscopes, chemically characterized indicator stains, and the then-new science of bacteriology. Ehrlich, in 1879 defined the cytoplasmic granules of the granulocytic white blood cells. He noted that the granules of approx 2 or 3% of the cells stained intensely with eosin, an acid dye. He also noted that a much larger proportion of the granulated cells stained with eosin but also stained with the basic dye azur. Accordingly he designated the former cells eosinophils and the latter cells heterophils or neutrophils. He inferred from these staining properties that both kinds of cells carry basic proteins in their granules and that the neutrophil granules contain a mixture of basic and acidic proteins (1). Metchnikov described in 1883 the preeminence of phagocytes including the neutrophils (microphages) in antimicrobial host defenses (2). Kanthack and Hardy in 1895 discovered that phagocytosis of bacteria induced granulocytes to degranulate. They linked this degranulation with the death of the bacteria (3). Petterson found antimicrobial activity in aqueous extracts of pus from human empyema; he attributed the action to basic proteins he found in the pus, comparing them to the protamines of salmon sperm (4). Now, in retrospect, the necessary information might have been in place, at that time, to formulate a hypothesis concerning the role of cationic granule proteins in host defenses against bacterial infection. As it happened, interest in the granules and their proteins had to lie fallow for more than 50 yr. The techniques of the time were simply unequal to the experimental demands.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    *

    The present volume is concerned with techniques, and I feel it is worthwhile noting that Hirsch had attempted, unsuccessfully, to analyze phagocytin with starch block electrophoresis that time a state of the art electrophoretic technique (Hirsch, personal communication). H.I. Zeya, who had just joined me as a graduate student unsuccessfully tried something of the same kind with whole granules on paper electrophoresis. Zeya added cetyltrimethylammonium bromide (CETAB) to the buffer. It then occured to me that the setup was designed for the electrophoresis of serum proteins that have a range of isoelectric points (IEP) from 4–6.8. We were trying to separate proteins that our histochemistry had suggested might have IEP as high as 10 (Spitznagel and Chi). So, I had Zeya reverse the usual circuit by ignoring the instructions and attaching the positive power lead to the black binding post and the negative power lead to the red post. The result was that the proteins separated into several bands that moved to the negative pole.

References

  1. Ehrlich, P. and Lazarus, A. (1900) Histology of the Blood (Myers, W., ed. and transl.) Cambridge University Press, Cambridge, UK. Reprinted in The Collected Papers of Paul Ehrlich (1956) vol 1. Histology, biochemistry and pathology. (Himmelweit, F., ed.) Pergamon Press, New York, pp 181–268.

    Google Scholar 

  2. Metchnikov, E. (1905) Immunity in Infective Disease. (Binnie, F. G., transl.) Cambridge University Press, London, p. 198 ff.

    Google Scholar 

  3. Kanthack, A. A. and Hardy, W. B. (1895) The morphology and distribution of wandering cells of mammalia. J. Physiol. (Lond) 17;81.

    Google Scholar 

  4. Petterson, A. (1905) Ueber die bakteriziden leukocytenstoffe und thre Beziehung zur Immuninitat. Centr. Bakteriol Parsitenk. Abt. I 39, 423–437.

    Google Scholar 

  5. De Duve, C. and Baudhuin, P. (1966). Peroxisomes (microbodies) and related particles. Physio. Rev. 46, 323–357.

    Google Scholar 

  6. Skarnes, R. C. and D. W. Watson (1956) Characterization of leukin: an antibacterial factor from leucocytes active against gram-positive pathogens. J. Exp. Med. 104, 829–45.

    Article  PubMed  CAS  Google Scholar 

  7. Robineaux, J and Frederic, J. (1955) Contribution a l’etude des granulations neutrophiles des polynucleaires par la microcinematographie en contraste de phase. Compte Rendus des Seances de la Societe de Biologie (Paris). 149, 486–489.

    CAS  Google Scholar 

  8. Hirsch, J. G and Cohn, Z. A. (1960) Degranulation of polymorphonclear leucocytes following phagocytosis of microorganisms. J. Exp. Med. 112, 105–114.

    Google Scholar 

  9. Spitznagel, J. K. (1961) Antibacterial effects associated with changes in bacterial cytology produced by cationic polypeptides. J. Exp. Med. 114, 1079–1091.

    Article  PubMed  CAS  Google Scholar 

  10. Spitznagel, J. K. and Chi, H. Y. (1963) Cationic proteins and antibacterial properties of infected tissues and leukocytes. Am. J. Pathol. 43, 697–711.

    PubMed  CAS  Google Scholar 

  11. Zeya, H. I. and Spitznagel, J. K. (1963) Antibacterial and enzymic basic proteins from leukocyte lysosomes: separation and identification. Science 142, 1085–1087.

    Article  PubMed  CAS  Google Scholar 

  12. Zeya, H. I. and Spitznagel, J. K. (1966) Cationic Proteins of polymorphonuclear leukocyte lysosomes resolution of antibacterial and enzymatic activities. J. Bact. 91, 750–754.

    PubMed  CAS  Google Scholar 

  13. Zeya, H. I. and Spitznagel, J. K. (1966) Cationic proteins of polymorphonuclear leukocyte lysosomes II Composition, properties, and mechanism of antibacterial action. J. Bact. 91, 755–762.

    PubMed  CAS  Google Scholar 

  14. Zeya, H. I. and Spitznagel, J. K. (1968) Arginine-rich proteins of polymorphonuclear leukocyte lysosomes. J. Exp. Med. 127, 927–941.

    Article  PubMed  CAS  Google Scholar 

  15. Zeya, H. I. and Spitznagel, J. K. (1969) Cationic protein-bearing granules of polymorphonuclear leukocytes: separation from enzyme-rich granules. Science 163, 1069–1071.

    Article  PubMed  CAS  Google Scholar 

  16. Holmes, B., Page, A. R., and Good, R. A. (1967) Studies of the metabolic activity of leukocytes from patients with a genetic abnormality of phagocytic function. J. Clin. Invest. 46, 1422–1432.

    Article  PubMed  CAS  Google Scholar 

  17. Klebanoff, S. J., (1967) Iodination of bacteria: a bactericidal mechanism. J. Exp. Med. 126, 1063–1078.

    Article  PubMed  CAS  Google Scholar 

  18. Klebanoff, S. J. and Clark, R. A. (1978) The Polymorph: Function and Clinical Disorders. North-Holland Press, Amsterdam, p 458.

    Google Scholar 

  19. Brune, K. and Spitznagel, J. K. (1973) Peoxidaseless chicken leukocytes: isolation and characteriaction of antibacterial granules. J. Infect. Dis. 127, 84–94.

    Article  PubMed  CAS  Google Scholar 

  20. Parry, M. F., Root, R. K., Metcalf, J. A., Delaney, K. K., Kaplow L. S., and Richar, W. J. (1981) Myeloperoxidase deficiency: Prevalence and clinical significance. Ann. Int. Med. 95, 293–301.

    PubMed  CAS  Google Scholar 

  21. Klebanoff, S. J. (1992) Oxygen metabolites from phagocytes, in Inflammation Basic Principles and Clinical Correlates, 2nd ed (Gallin, J. I. et al., eds.) Raven, New York, pp. 555–557.

    Google Scholar 

  22. Zeya, H. I. and Spitznagel, J. K. (1969) Cationic protein-bearing granules of polymorphonuclear leukocytes: separation from enzyme-rich granules. Science. 163, 1069–1071.

    Article  PubMed  CAS  Google Scholar 

  23. Zeya, H. I and Spitznagel, J. K. (1971) Characterization of cationic protein-bearing granules of polymorphonuclear leukocytes. Lab. Invest. 24, 229–236.

    PubMed  CAS  Google Scholar 

  24. Macrae, E. K. and Spitznagel, J. K. (1975) Ultrastructural localization of Cationic proteins in cytoplasmic granules of chicken and rabbit polymorphonuclear leukocytes. J. Cell Sci. 17, 79–94.

    PubMed  CAS  Google Scholar 

  25. Pereira, H. A., Spitznagel, J. K., Winton, E. F., Shafer, W. M., Martin, L. E., Gusman, G. S., Pohl, J., Scott, R. W., Marra, M. N., and Kinkade, J. M. (1980) The ontogeny of a 57-kD cationic antimicrobial protein of human polymorphonuclear leukocytes: location to a novel granule population. Blood 76, 825–834.

    Google Scholar 

  26. Mandell, G. L. (1974) Bactericidal activity of aerobic and anaerobic polymorphonuclear neutrophils. Infect. Immun. 4, 337–341.

    Google Scholar 

  27. Mandell, G. L. and Hook, E. W. (1969) Leukocyte bactericidal activity in chronic granulomatous disease: correlation of bacterial hydrogen peroxide production and susceptibility to intracellular killing. J. Bact. 100, 531–532.

    PubMed  CAS  Google Scholar 

  28. Rest, R. F., Fischer, S. H., Ingham, Z. Z., and Jones, J. F. (1982) Interactions of Neisseria gonorrhoeae with human neutrophils: effect of serum and gonococcal opacity on phagocyte killing and chemiluminescence. Infect. Immun., 36, 737–730.

    PubMed  CAS  Google Scholar 

  29. Okamura, N. and Spitznagel, J. K. (1982) Outer membrane mutants of Salmonella typhimurium LT2 have lipopolysaccharide-dependent resistance to the bactericidal activity of anaerobic human neutrophils. Infect. Immun. 36, 1086–1095.

    PubMed  CAS  Google Scholar 

  30. Weiss, J., Elsbach, P., Olsson, I. and Odeberg, (1978) Purification and characterization of a potent bactericidal and membrane active protein from the granules of human polymorphonuclear leukocytes. J. Biol. Chem. 253, 2664–2672.

    PubMed  CAS  Google Scholar 

  31. Gray, P. W. G., Flaggs, G., Leong, S. R., Gumina, R. J., Weiss, J., Ooi, C. E., and Elsbach, P. (1989) Cloning of the cDNA of a human neutrophil bactericidal protein. Structural and functional correlation. J. Biol. Chem. 264, 9505–9509.

    PubMed  CAS  Google Scholar 

  32. Shafer, W. M., Martin, L. E., and Spitznagel, J. K. (1984) Cationic antimicrobial proteins isolated from human neutrophil granulocytes in the presence of diisopropyl fluorophosphate. Infect. Immun. 45, 29–35.

    PubMed  CAS  Google Scholar 

  33. Gabay, J. E., Scott, R. W., Campanelli, D. D., Griffith, J., Wilde C., Marra, M. N., Seeger, M., and Nathan, C. F. (1989) Antibiotic proteins of human polymorphonuclear leukocytes. Proc. Natl. Acad. Sci. USA 86, 5610–5614.

    Article  PubMed  CAS  Google Scholar 

  34. Pohl, J., Pereira, H. A., Martin, M. N., and Spitznagel, J. K. (1990) Amino acid sequence of CAP37, a human neutrophil granule-derived antibacterial and monocytic-specific chemotactic glycoprotein structurally similar to neutrophil elastase. FEBS Lett. 272, 200–204.

    Article  PubMed  CAS  Google Scholar 

  35. Morgan, J. F., Sukiennicki, T., Pereira, H. A., and Spitznagel, J. K. (1991) Cloning of the cDNA for the serine protease-like CAP37/Azurocidin, a microbicidal and chemotactic protein from human granulocytes. J. Immunol. 147.

    Google Scholar 

  36. Selsted, M. E., Brown, D. M., DeLange, R. J., Harwig, S. S. L., and Lehrer, R. I. (1985) Primary structures of six antimicrobial peptides of rabbit peritoneal neutrophils. J. Biol Chem. 260, 4579–4584.

    PubMed  CAS  Google Scholar 

  37. Selsted, M. E., Harwig, S. S. L., Ganz, T., Schilling, J. W., and Lehrer, R. I. (1985) Primary structures of three human neutrophil defensins. J. Clin. Invest. 76, 1436–1439.

    Article  PubMed  CAS  Google Scholar 

  38. Selsted, M. E. and Harwig, S. S. (1989) Determination of the disulfide array in the human defensin HNP-2. A covalently cyclized peptide. J. Biol. Chem. 264, 4003–4007.

    PubMed  CAS  Google Scholar 

  39. Pereira, H. A., Erdem, I., Pohl, J., and Spitznagel, J. K. (1993) Synthetic bactericidal peptide based on CAP37: a 37kDa human neutrophil granule-associated cationic antimicrobial protein chemotactic for monocytes. Proc. Natl. Acad. Sci. USA 90, 4733–4737.

    Article  PubMed  CAS  Google Scholar 

  40. Shafer, W. M., Shepherd, M. E., Boltin, B., Wells, L., and Pohl, J. (1993) Synthetic peptides of human lysosomal cathepsin G with antipseudomonal activity. Infect. Immun. 61, 1900–1908.

    PubMed  CAS  Google Scholar 

  41. Shafer, W. M., Hubalek, F., Huang, M., and Pohl, J. (1996) Bactericidal activity of a synthetic peptide (CG 117-136) of human lysosomal cathepsin G is dependent on arginine content. Infect. Imm. 64, 482–485.

    Google Scholar 

  42. Ooi, C. E., Weiss, J., Elsbach, P., Frangione, B., and Mannion, B. (1987) A 25-kDa NH2-terminal fragment carries all the antibacterial activities of the human neutrophil 60-kDa bactericidal/permeability increasing protein. J. Biol. Chem. 262, 14,891–14,894.

    PubMed  CAS  Google Scholar 

  43. Scocchi, M., Romeo, D., and Zanetti, M. (1994) Molecular cloning of Bac7, a proline-and arginine-rich antimicrobial peptide from bovine neutrophils. FEBS Lett. 352, 197–200.

    Article  PubMed  CAS  Google Scholar 

  44. Flodgard, H., Ostergaard, E., Bayne, S., Svendsen, A., Thomsen, J., Engels, M., and Wollmer, A. (1991) Covalent structure of two novel heterophil leucocyte-derived proteins of porcine and human origin. Neutrophil elastase homologues with strong monocyte and fiboblast chemotactic action. Eur. J. Biochem. 197, 535–547.

    Article  Google Scholar 

  45. Zanetti, M., Gennaro, T., and Romeo, D. (1995) Cathelicidins: a novel protein family with a common proregion and a variable C-terminal antimicrobial domain. FEBS Lett. 374, 1–5.

    Article  PubMed  CAS  Google Scholar 

  46. vanAbel, R. J., Tang, Y. Q., Rao, V. S., Dobbs, C. H., Tran, D., Barany, G., and Selsted, M. E. (1995) Synthesis and characteracation of indolicidin, a tryptophan-rich antimicrobial peptide from bovine neutrophils. J. Pept. Protein Res. 45, 401–409.

    Article  Google Scholar 

  47. Seldsted, M. E., Tang, Y. Q., Morris, W. L., McGuire, P. A., Novotny, M. J., Smith, W., Henschen, A. H., and Collor, J. S. (1993) Purification, primary structures, and antibacterial activities of beta-defensins, a new family of antimicrobial peptides from bovine neutrophils. J. Biol. Chem. 268, 6641–6648.

    Google Scholar 

  48. Pereira, H. A., Shafer, W. M., Pohl, J., Martin, L. E., and Spitznagel, J. K. (1990) CAP37, a human neutrophil-derived chemotactic factor with monocyte specific activity. J. Clin. Invest. 85, 1468–1876.

    Article  PubMed  CAS  Google Scholar 

  49. Territo, M. C., Ganz, T., Selsted, M. E., and Lehrer, R. I. (1989) Monocyte chemotactic activity of defensins from human neutrophils. J. Clin. Invest. 85, 2017–2020.

    Article  Google Scholar 

  50. Zhu, Q. Z., Singh, A. V., Esch, F., and Solomon, S. (1987) The coticostatic (anti-ACTH) and cytotoxic activity of peptides isolated from fetal, adult and tumor bearing lung. J. Steroid Biochem. 27, 1017–1022.

    Article  PubMed  CAS  Google Scholar 

  51. Zasloff, M. (1987) Magainins, a class of antimicrobial peptides from Xenopus skin: characterization of two active forms and partial cDNA sequence of a precursor. Proc. Natl. Acad. Sci. USA 84, 5449–5453.

    Article  PubMed  CAS  Google Scholar 

  52. Mignona, G., Simmaco, M., Kreil, G., and Barra, D. (1993) antibacterial and haemolytic peptides containing D-alloisoleucine from the skin of Bombina variegata. CMBO J. 12, 4829–4832.

    Google Scholar 

  53. Lee, J. Y., Boman, A., Sun, C., Andersson, M., Jornvall, H., Mutt, V., and Boman, H. G. (1989) Antibacterial peptides from pig intestine: isolation of a mammalian cecropin. Proc. Natl. Acad. Sci. USA 86, 9159–9162.

    Article  PubMed  CAS  Google Scholar 

  54. Hultmark, D., Steiner, H., Rasmuson, T., and Boman, H. G. (1980) Insect immunity: purification and properties of three inducible bactericidal proteins from hemolymph of immunized pupae of Hyalophora cecropia. Eur. J. Biochem. 106, 7–16.

    Article  PubMed  CAS  Google Scholar 

  55. Hultmark, D. (1994) Drosophila as a model system for antibacterial peptides, Antimicrobial Peptides (Boman, H. G., ed.) Cuba Found. Symp. 186, 107–119, Wiley, New York.

    Google Scholar 

  56. Lee, J. Y., Boman, A., Sun, C., Andersson, M., Jornvall, H., Mutt, V., and Boman, H. G. (1989) Antibacterial peptides from pig intestine: isolation of a mammalian cecropin. Proc Natl. Acad. Sci. USA 86, 9159–9162.

    Article  PubMed  CAS  Google Scholar 

  57. Eisenhauer, P. B., Harwig, S. S. S. L., and Leherer, R. I. (1992) Cryptdins: antimicrobial defensins of the murine small intestine. Infect. Immun. 60, 3556–3565.

    PubMed  CAS  Google Scholar 

  58. Jones, D. E. and Bevins, C. L. (1992) Paneth cells of the human small intestine express an antimicrobial peptide gene. J. Biol. Chem. 267, 23,216–23,225.

    PubMed  CAS  Google Scholar 

  59. Iwanaga, S., Muta, T., Shigenaga, T., Seki, M., Kawano, K., Katsu, T., and Dawabata, S. (1994) Structure-function relationships of tachyplesins and their analoques. Ciba Found. Symp. 186, 160–174.

    PubMed  CAS  Google Scholar 

  60. Maloy, W. L. and Kari, U. P. (1995) Structure-activity studies on magainins and other host defense peptides. Biopolymers 37, 105–122.

    Article  PubMed  CAS  Google Scholar 

  61. Casteels-Josson, K., Capaci, T., Casteeels, P., and Tempst, P. (1993) Apidaecin multipeptide precursor structure a putative mechanism for amplification of the insect antibacterial response. EMBO J. 12, 1569–1578.

    PubMed  CAS  Google Scholar 

  62. Casteels, P., Ampe, C., Jacobs, F., and Tempst, P. (1993) Functional and chemical characterization of hymenoptaecin, an antibaterial polypeptide that is infection-inducible in the honeybee (Apes mellifera). J. Biol. Chem. 268, 7044–7054.

    PubMed  CAS  Google Scholar 

  63. Kokryakov, V. N., Harwig, S. S., Panyutich, E. A., Shevchenko, A. A., Aleshina, G. M., Shamova, O. V., Korneva, H. A., and Lehrer, R. I. (1993) Protegrins: leukocyte antimicrobial peptides that combine features of corticostatic defensins and tachyplesins. FEBS Lett. 327, 231–236.

    Article  PubMed  CAS  Google Scholar 

  64. Troxler, R. F., Offner, G. D., Xu, T., Banderspek, J. C., and Oppenheim, F. G. (1990) Structural relationship between human salivary histatins. J. Dental Res. 69, 2–6.

    Article  CAS  Google Scholar 

  65. Oppenheim, F. G., Xu, T., McMillian, F. M., Levitz, S. M., Diamond, R. D., Offner, G. D., and Troxler, R. F. (1988) Histatins, a novel family of histidine-rich proteins in human parotid secretion, solation, characterization, primary structure and fungistatic effects on Candida albicans. J. Biol. Chem. 263, 7472–7477.

    PubMed  CAS  Google Scholar 

  66. Maloy, W. L. and Kari, U. P. (1995) Structure-activity studies on magainins and other host defense peptides. Biopolymers 37, 105–122.

    Article  PubMed  CAS  Google Scholar 

  67. Kagan, B. L., Selsted, M. E., Ganz, T. and Lehrer, R. I. (1990) Antimicrobial defensin peptides form voltage-dependent ion-permeable channels in planer lipid bilayer membranes. Proc. Natl. Acad. Sci. USA 87, 1570–1590.

    Article  Google Scholar 

  68. Lehrer, R. I., Barton, A., Daher, K. A., Harwig, S. S. L., Ganz, T., and Selster, M. E. (1989) Interaction of human defensins with Escherichia coli mechanism of bactericidal activity. J. Clin. Invest. 84, 553–561.

    Article  PubMed  CAS  Google Scholar 

  69. Rest, R. F., Cooney, M. H., and Spitznagel, J. K. (1977) Susceptibility of lipo-polysaccharide mutants to the bactericidal action of juman neutrophil lysosomal fractions. Infect. Immun. 16, 145–151.

    PubMed  CAS  Google Scholar 

  70. Shafer, W. M., Casey, S. G., and Spitznagel, J. K. (1984) Lipid A and resistance of Salmonella typhimurium to antimicrobial granule proteins of human neutrophil granulocytes. Infect. Immun. 43, 834–838.

    PubMed  CAS  Google Scholar 

  71. Roland, K. L., Martin, L. E., Esther, C. R., and Spitznagel, J. K. (1993) Spontaneous pmrA mutants of Sallmonella typhimurium LT2 defines a new two-component regulatory system with a possible role in virulence. J. Bact. 175, 4154–4164.

    PubMed  CAS  Google Scholar 

  72. Farley, M. M., Shafer, W. M., and Spitznagel, J. K. (1988) Lipopolysaccharide structure determines ionic and hydrophobic binding of a cationic antimicrobial neutrophil granule protein. Infect. Immun. 56, 1589–1592.

    PubMed  CAS  Google Scholar 

  73. Groisman, E. A., Parra-Lopez, C., Salcedo, M., Lipps, C. J., and Heffron, F. (1992) Resistance to host antimicrobial peptides is necessary for Salmonella virulence. Proc. Natl. Acad. Sci. USA 89, 11,939–11,943.

    Article  PubMed  CAS  Google Scholar 

  74. Roland, K. L., Esther, C. R., and Spitznagel, J. K. (1994) Isolation and characterization of a gene, pmrD, from Salmonella typhimurium LT2. J. Bact. 176, 3589–3597.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Humana Press Inc.

About this protocol

Cite this protocol

Spitznagel, J.K. (1997). Origins and Development of Peptide Antibiotic Research. In: Shafer, W.M. (eds) Antibacterial Peptide Protocols. Methods In Molecular Biology™, vol 78. Humana Press. https://doi.org/10.1385/0-89603-408-9:1

Download citation

  • DOI: https://doi.org/10.1385/0-89603-408-9:1

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-408-2

  • Online ISBN: 978-1-59259-564-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics