Skip to main content

Nonradioactive Labeling of Polymerase Chain Reaction Products

  • Protocol
PCR Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 15))

  • 6419 Accesses

Abstract

Polymerase chain reaction (PCR) was originally introduced to amplify in vitro particular DNA sequences by the application of temperature cycles (1). In a modification, RNA molecules also may serve as templates by an additional reverse transcription step converting RNA in complementary DNA sequences (2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Saiki, R. K., Scharf, S., Faloona, F., Mullis, K. B., Horn, G. T., Erlich, H. A., and Amheim, N. (1985) Enzymatic amplification of ß-globin sequences and restrrction site analysis for diagnosis of sickle cell anemia. Scrence 230, 1350–1354.

    Article  CAS  Google Scholar 

  2. Murakawa, G. J., Wallace, B. R., Zaia, J. A., and Rossi, J. J. (1987) Method for amplification and detection of RNA sequences. European Patent Application 0272098

    Google Scholar 

  3. Wu, D. Y. and Wallace, R. B, (1989) The ligation and amplification reaction (LAR)—amplification of specific DNA sequences using sequential rounds of template dependent ligation. Genomics 4, 560–569.

    Article  PubMed  CAS  Google Scholar 

  4. Segev, D. (1990) Amplification and detection of target nucleic acid sequences— for in vitro diagnosis of infectious disease, genetic disorders or cellular disorders, e.g., cancer. Published under Patent Corporation Treaty (PCT) International Application WO 90/01069.

    Google Scholar 

  5. Kwoh, D. Y., Davis, G. R., Whitfield, K. M., Chapelle, H. L., DiMichelle, L. J., and Gingeras, T. R. (1989) Transcription-based amplification system and detection of amplified human immunodeficiency virus. Proc. N&l. Acad, Sci. USA 86, 1173–1177.

    Article  CAS  Google Scholar 

  6. Guatelli, J. C., Whitfield, K. M., Kwoh, D. Y., Barringer, K. J., Richman, D. D., and Gingeras, T. R. (1990) Isothermal, in vitro amplification of nucleic acids by a multienzyme reaction modeled after retroviral replication. Proc. Natl. Acad. Sci. USA 87, 1874–1878.

    Article  PubMed  CAS  Google Scholar 

  7. Davey, C. and Malek, L. T. (1988) Nucleic acid amplification process. European Patent Application 0329098.

    Google Scholar 

  8. Schuster, D., Thornton, C., Buchmann, G., Berninger, M., and Rashtchian, A. (1990) A method for isothermal amplification of nucleic acid sequences, 5th San Diego Conference on Nucleic Acids, American Association of Clinical Chemistry (AACC), Abstract Poster 40.

    Google Scholar 

  9. Lizardi, P. M., Guerra, C. E., Lomeli, H., Tussie-Luna, I., and Kramer, F. R. (1988) Exponential amplification of recombinant RNA hybridization probes. Biotechnology 6, 1197–1202.

    Article  CAS  Google Scholar 

  10. Saiki, R. K., Gelfand, D. H., Stoffel, S., Scharf, S. H., Higuchi, R., Horn, G. T., Mullis, K. B., and Erlich, H.A.(1988) Primer-directed enzymatic ampliflcation of DNA with a thermostable DNA polymerase. Science 239, 487–491.

    Article  PubMed  CAS  Google Scholar 

  11. Kessler, C. (1990) Detection of nucleic acids by enzyme-linked immuno-sorbent assay (ELISA) technique: An example for the development of a novel non-radioactive labeling and detection system with high sensitivity, in Advances in Mutagenesls Research (Obe, G., ed.), Springer-Verlag, Berlin, pp. 105–152.

    Chapter  Google Scholar 

  12. Kessler, C, Hòltke, H.-J., Seibl, R., Burg, J., and Muhlegger, K. (1990) Non-radioactive labeling and detection of nucleic acids: I. A novel DNA labeling and detection system based on digoxigenin:anti-digoxigenin ELISA principle (digoxigenin system). Biol. Chem. Hoppe-Seyler 371, 917–927.

    Article  PubMed  CAS  Google Scholar 

  13. Hòltke, H.-J., Seibl. R., Burg, J., Mhhlegger, K., and Kessler, C. (1990) Non-radioactive labeling and detection of nucleic acids: II. Optimization of the digoxigenin system. Blol. Chem. Hoppe-Seyler 371, 929–938.

    Article  Google Scholar 

  14. Seibl. R., Höltke, H.-J., Rüger, R., Meindl, A., Zachau, H. G., Raßhofer, R., Roggendorf, M., Wolf, H., Arnold, N., Wienberg, J., and Kessler, C. (1991) Non-radioactive labeling and detection of nucleic acids: III. Applications of the digoxigenin system. Biol. Chem. Hoppe-Seyler 371, 939–951.

    Article  Google Scholar 

  15. Muhlegger, K., Huber, E., von der Eltz, H., Rüger, R., and Kessler, C. (1990) Non-radioactive labeling and detection of nucleic acids: IV. Synthesis and properties of the nucleotide compounds of the digoxigenin system and of photodig-oxigenin. Biol. Chem. Hoppe-Seyler 371, 953–965.

    Article  PubMed  CAS  Google Scholar 

  16. Rdger, R., Höltke, H.-J., Sagner, G., Seibl, R., and Kessler, C. (1991) Rapid labelling methods using the DIG-system: incorporation of digoxigenin in PC reactions and labelling of nucleic acids with photodigoxigenin. Fresenius’ Z. Anal. Chem. 337, 114.

    Google Scholar 

  17. Schaap, A. P., Sandison, M. D., and Handley, R. S. (1987) Chemical and enzymatic triggering of 1,2-dioxetanes. Alkalme phosphatase-catalyzed chemilu-minescence from an aryl phosphate-substituted dioxetane. Tetrahedron Lett. 28, 1159–1162.

    Article  CAS  Google Scholar 

  18. Bronstein, I., Edwards, B., and Voyta, J. C. (1989) 1,2-Dioxetanes: novel chemi-luminescent enzyme substrates. Applications to immunoassay. L. Biolum. Chemolum. 4, 99–111.

    Article  CAS  Google Scholar 

  19. Hòltke, H. J., Sagner, G., Kessler, C., and Schmitz, G. G. (1992) Sensitive chemiluminescent detection of digoxigenin-labeled nucleic acids: A fast and simple protocol and its applications. Biotechnlques 12, 104–113.

    Google Scholar 

  20. Innis, M. A., Gelfand, D. H., Sninsky, J. J., and White, T. J. (1990) PCR Protocols. A Guide to Methods and Applications. Academic, New York.

    Google Scholar 

  21. Kessler, C. (1991) The digoxigenin: anti-digoxigenin (DIG) technology-a survey on the concept and realization of a novel bioanalytical indicator system. Mol. Cell. Probes 5, 161–205.

    Article  PubMed  CAS  Google Scholar 

  22. Keller, G. H. and Manak, M. M. (1989) DNA Probes. Stockton, New York.

    Google Scholar 

  23. Kricka, L. J. (1992) Nomsotoplc DNA Probe Techmques. Academic, San Diego, CA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Reischl, U., Rüger, R., Kessler, C. (1993). Nonradioactive Labeling of Polymerase Chain Reaction Products. In: White, B.A. (eds) PCR Protocols. Methods in Molecular Biology, vol 15. Humana Press, Totowa, NJ. https://doi.org/10.1385/0-89603-244-2:51

Download citation

  • DOI: https://doi.org/10.1385/0-89603-244-2:51

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-0-89603-244-6

  • Online ISBN: 978-1-59259-502-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics