Skip to main content

Multiple Opioid Receptors in the Central Nervous System

  • Protocol
Receptor Binding

Part of the book series: Neuromethods ((NM,volume 4))

Abstract

The initial landmarks in opioid receptor research were the demonstration of stereospecificity (Becket and Casey, 1954) and the identification of receptor sites in central nervous system (CNS) membrane preparations (Pert and Snyder, 1973; Simon et al., 1973). Subsequent behavioral studies with a number of opiate agonists suggested that more than one opioid receptor population was present in the CNS (Martin et al., 1976; Gilbert and Martin, 1976). The concept of multiple opioid receptors has been extensively investigated, and present data indicate that three major opioid receptor populations are present in the brain (Iwamoto and Martin, 1981; Zukin and Zukin, 1981; Wood, 1982). These are the mu (μ), delta (δ), and kappa (κ) sites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahtee L. and Kaariainen I (1973) The effect of narcotic analgesics on the homovanillic acid content of rat nucleus caudatus Eur. J. Pharmacol 22, 206–208.

    PubMed  CAS  Google Scholar 

  • Akil H., Hewlett W. A., Barchas J. D., and Li C. H. (1980) Binding of 3H-β-endorphm to rat brain membranes Characterization of opiate receptors and mteractron with ACTH. Eur J. Pharmacol 64, 1–8.

    PubMed  CAS  Google Scholar 

  • Algeri A., Brunello N., Calderini G., and Consolazione A (1978) Effect of enkephalins on catecholamine metabolism in rats CNS Adv Biochem Psychopharmacol 18, 199–209

    PubMed  CAS  Google Scholar 

  • Attali B., Gouardéres L., Mazarguil H., Audigier Y., and Cros J. (1982) Evidence for multiple “kappa” binding sites by use of opioid peptides in the guinea pig lumbosacral spinal cord Neuropeptides 3, 53–64

    PubMed  CAS  Google Scholar 

  • Atweh S F and Kuhar M. J (1977) Autoradiographic localization of opiate receptors in rat brain. I. Spinal cord and lower medulla Brain Res 124, 53–67.

    PubMed  CAS  Google Scholar 

  • Audigier Y., Attali B, Mazarguil H, and Cros J (1982) Characterization of [3H]-etorphine binding in guinea pig striatum after blockade of mu and delta sites. Life Sci. 31, 1287–1290

    PubMed  CAS  Google Scholar 

  • Barnard E. A and Demoliou-Mason C. (1983) Molecular properties of opioid receptors Brit. Med. Bull. 39, 37–45.

    PubMed  CAS  Google Scholar 

  • Becket A H and Casey A F. (1954) Synthetic analgesics Stereo-chemical considerations. J. Pharm. Pharmacol 6, 986–1001

    Google Scholar 

  • Bliss C I. and James A. T. (1966) Fitting the rectangular hyperbola. Biometrics 22, 573–602

    PubMed  CAS  Google Scholar 

  • Burgisser E. (1984) Radioligand-receptor binding studies. What’s wrong with the Scatachard analysis? Trends Pharmacol. Sci 5, 142–144

    Google Scholar 

  • Chang K J. and Cuatrecasas P. (1979) Multiple opiate receptors. Enkephalins and morphine bind to receptors of different specificity. J. Biol. Chem. 254, 2610–2618

    PubMed  CAS  Google Scholar 

  • Chang K. J,, Killian A., Hazum E., Cuatrecasas P., and Chang J. K. (1981a) Morphiceptin (NH4-Tyr-Pro-Phe-Pro-CONH2): A potent and specific agonist for morphine (p) receptors. Science 212, 75–77

    PubMed  CAS  Google Scholar 

  • Chavkin C., James I. F., and Goldstein A (1982) Dynorphin is a specific endogenous ligand of the κ opioid receptor Science 215, 413–415

    PubMed  CAS  Google Scholar 

  • Cheney D L, Trabucchi M., Racagni G, Wang C, and Costa E (1974) Effects of acute and chronic morphine on regional rat brain acetylcholine turnover rate. Life Sci. 15, 1977–1990.

    CAS  Google Scholar 

  • Childers S.R., Creese I., Snowman A. M., and Snyder S H (1979) Opiate receptor binding affected differentially by opiates and opioid peptides. Eur. J. Pharmacol 55, 11–18.

    PubMed  CAS  Google Scholar 

  • Costa E., Cheney D L, Racagni G, and Zsilla G (1975) An analysis at the synaptic level of the morphine action in striatum and N. accumbens. Dopamme and acetylcholine mteractions Life Sci. 17, 1–8

    PubMed  CAS  Google Scholar 

  • Duka T., Wuster M., Schubert P., Stoiber R., and Herz A. (1981) Selective localization of different types of opiate receptors in hippocampus as revealed by in vitro autoradiography. Brain Res. 205, 181–186

    PubMed  CAS  Google Scholar 

  • Ferrara P and Li C. H. (1980) β-Endorphm Characteristics of binding sites in rabbit spinal cord. Proc Natl. Acad. Sci USA 77, 5746–5748.

    PubMed  CAS  Google Scholar 

  • Fields H. L., Emson P. C, Leigh B K., Gibert R F. T., and Iversen L. L. (1980) Multiple opiate receptor sites on primary afferent fibers. Nature (Lond.) 284, 351–353.

    CAS  Google Scholar 

  • Finnerty E. P. and Chan S. H. H (1979) Morphine suppression of substantia nigra zona reticulata neurons in the rat. Implicated role for a novel striatomgral feedback mechanism Eur. J Pharmacol 59, 307–310

    PubMed  CAS  Google Scholar 

  • Foote R. W. and Maurer R. (1982) Autoradiographic localization of opiate κ-receptors in the guinea pig brain. Eur. J. Pharmacol 85, 99–103

    PubMed  CAS  Google Scholar 

  • Foote R. W. and Maurer R (1983) Kappa opiate binding sites in the substantia nigra and bulbus olfactorius of the guinea pig as shown by in vitro autoradiography Life Sci. 33, 243–246.

    PubMed  CAS  Google Scholar 

  • Gamse R., Holzer P, and Lembeck F. (1979) Indirect evidence for presynaptic location of opiate receptors on chemosensitive primary sensory neurons. Naunyn-Schmiedeberg’s Arch. Pharmacol 308, 281–285

    CAS  Google Scholar 

  • Gardner E. L, Zukin R. S, and Makman M. H (1980) Modulation of opiate receptor binding in striatum and amygdala by selective mesencephalic lesions. Brain Res 194, 232–239

    PubMed  CAS  Google Scholar 

  • Garzon J., Sanchez-Blazquez P, Gerhart J., Loh H. H, and Lee N. M (1984) Dynorphin A. Inhibitory effect on other opiate ligand bindings in the mouse brain. Biochem. Pharmacol 33, 2609–2614.

    PubMed  CAS  Google Scholar 

  • Gauchy C., Agid Y., Glowinski J., and Cheramy A. (1973) Acute effects of morphine on dopamine synthesis and release and tyrosine metabolism in the rat striatum. Eur J Pharmacol 22, 311–319.

    PubMed  CAS  Google Scholar 

  • Gilbert P. E. and Martm W. R (1976) The effects of morphine-and nalorphine-like drugs in nondependent morphine-dependent and cyclazocine-dependent chronic spinal dog J Pharmacol Exp Ther. 198, 66–82.

    PubMed  CAS  Google Scholar 

  • Gillan M G C. and Kosterlitz H W (1982) Spectrum of the μ-, δ-, and κ-binding sites in homogenates of rat brain Brit. J. Pharmacol 77, 461–469.

    CAS  Google Scholar 

  • Gommeren W. and Leysen J. E (1982) Binding characteristics of 3H-lofentanil at the opiate receptor. Arch Int Pharmacodyn. 258, 171–173

    PubMed  CAS  Google Scholar 

  • Goodman R R., Snyder S H., Kuhar M J, and Young W S. (1980) Differentiation of delta and mu opiate receptor localizations by light microscopic autoradiography Proc Natl. Acad Sci USA 77, 6239–6243.

    PubMed  CAS  Google Scholar 

  • Goodman R R. and Snyder S. H (1982) Kappa opiate receptors localized by autoradiography to deep layers of cerebral cortex. relation to sedative effects. Proc. Natl. Acad. Sci. USA 79, 5703–5707

    PubMed  CAS  Google Scholar 

  • Guidotti A, Moroni F, Gale K, and Kumakura K. (1978) Opiate Receptor Stimulation Blocks the Activation of Striatal Tyrosme Hydroxylase (TH) Induced by Haloperidol, in Catecholamines: Basic and Clinical Frontiers (Usdin E., Kopin I. J., and Barchas J., eds ) Pergamon Press, New York, pp. 1035–1037.

    Google Scholar 

  • Hahn E. F., Carroll-Buatti M., and Pasternak G. W. (1982) Irreversible opiate agonists and antagonists: The 14-hydroxydihydromorphinone azines. J. Neuroscience 2, 572–576.

    CAS  Google Scholar 

  • Harris D. W. and Sethy V. H. (1980) High affinity binding of [3H]-ethylketocyclazocine to rat brain homogenate Eur. J. Pharmacol. 66, 121–123.

    PubMed  CAS  Google Scholar 

  • Herling S. and Woods J. H. (1981) Discriminative stimulus effects of narcotics: Evidence for multiple receptor-mediated actions. Life Sci. 28, 1571–1584.

    PubMed  CAS  Google Scholar 

  • Hiller J. M., and Simon E J, (1980) Specific high affinity [3H]-ethylketocyclazocine binding in rat central nervous system. Lack of evidence for μ receptors J. Pharmacol Exp. Ther 214, 516–519

    PubMed  CAS  Google Scholar 

  • Hiller J. M. Angel L M., and Simon E. J. (1984) Characterization of the selective inhibition of the delta subclass of opioid binding sites by alcohols Mol. Pharmacol 25, 249–255.

    PubMed  CAS  Google Scholar 

  • Hughes J. (1975) Isolation of an endogenous compound from the brain with pharmacological properties similar to morphine Brain Res 88, 295–308.

    PubMed  CAS  Google Scholar 

  • Itzhak Y., Hiller J M, and Simon E. J. (1984) Solubilization and characterization of μ-, δ-, and κ-Opioid binding sites from guinea pig brain: Physical separation of κ receptors. Proc. Natl Acad Sci USA 81, 4217–4221.

    PubMed  CAS  Google Scholar 

  • Iwamoto E T. and Martin W. R. (1981) Multiple opioid receptors Med. Res. Rev. 1, 411–440

    PubMed  CAS  Google Scholar 

  • Iwatsuba K and Clouet D. H (1977) Effects of morphine and haloperidol on the electrical activity of rat nigrostriatal neurons J. Pharmacol Exp Ther 202, 429–436.

    Google Scholar 

  • James I. F., Chavkin C, and Goldstein A. (1982) Preparation of brain membranes containing a single type of oploid receptor highly selective for dynorphin Proc Natl. Acad Sci USA 79, 7570–7574

    PubMed  CAS  Google Scholar 

  • Kelly P. D, Rance M J., and Traynor J. R (1982) Properties of opiate binding in the rat spinal cord. Neuropeptides 2, 319–324

    CAS  Google Scholar 

  • Klotz I. M. (1982) Numbers of receptor sites from Scatchard graphics Facts and fantasies. Science 217, 1247–1249.

    PubMed  CAS  Google Scholar 

  • Kosterlitz H. W. and Paterson S J. (1980) Characterization of opioid receptors in nervous tissue. Proc. Roy. Sot. Lond (B ) 210, 113–122.

    CAS  Google Scholar 

  • Lamotte C., Pert C. B, and Snyder S, H. (1976) Opiate receptor binding in primate spinal cord: Distribution and changes after dorsal root section Brain Res. 112, 407–412.

    PubMed  CAS  Google Scholar 

  • Law P. Y, Loh H. H., and Li C H. (1979) Properties and localization of β-endorphin receptor in rat brain Proc Natl. Acad. Sci. USA 76, 5455–5459.

    PubMed  CAS  Google Scholar 

  • Lewis M. E., Young E. A., Houghten R. A., Akil H., and Watson S. J, (1984) Binding of [3H]-dynorphin to apparent κ opioid receptors in deep layers of guinea pig cerebral cortex. Eur. J. Pharmacol 98, 149–150

    PubMed  CAS  Google Scholar 

  • Ling G. S. F., Spiegel K, Nishimura S L., and Pasternak G. W. (1983) Dissociation of morphine’s analgesic and respiratory depressant actions. Eur J Pharmacol 86, 487–488.

    PubMed  CAS  Google Scholar 

  • Loew G. H., Toll L., and Keys C (1983) Computer-assisted analysis of receptor-binding studies of [3H]-naloxone and [3H]-DADLA reinterpretation of the Na+ effect. Life Sci. 33, 163–166.

    PubMed  CAS  Google Scholar 

  • Martin W. R., Eades C. G, Thompson J M., Huppler R E, and Gilbert P. E. (1976) The effects of morphine-and nalorphine-like drugs in the non-dependent chronic spinal dog J. Pharmacol. Exp Ther. 197, 517–532.

    PubMed  CAS  Google Scholar 

  • Maurer R. (1982) Multiplicity of opiate receptors in different species. Neurosc. Lett 30, 303–307

    CAS  Google Scholar 

  • Meibach R. C. and Mayani S. (1980) Localization of naloxone-sensitive [3H]-dihydromorphine binding sites within the hippocampus of the rat. Eur J, Pharmacol. 68, 175–179.

    CAS  Google Scholar 

  • Moleman P. and Bruinvels J. (1979) Effect of morphine on dopaminergic neurons in the rat basal forebrain and striatum. J Neural. Transm. 46, 225–237.

    PubMed  CAS  Google Scholar 

  • Moroni F., Cheney D. L., and Costa E. (1977) Inhibition of acetylcholine turnover in rat hippocampus by intraseptal injections of β-endorphin and morphine Naunyn-Schmiedeberg’s Arch. Pharmacol. 299, 149–153

    CAS  Google Scholar 

  • Moroni F., Cheney D. L., and Costa E. (1978) The turnover rate of acetylcholine in brain nuclei of rats injected intraventricularly and intraseptally with alpha and beta-endorphin Neuropharmacology 17, 191–196.

    PubMed  CAS  Google Scholar 

  • Moroni F., Peralta E., Cheney D. L.,and Costa E. (1979) On the regulation of γ-aminobutyric acid neurons in caudatus, pallidus, and nigra: Effects of opioids and dopamine agonists J. Pharmacol. Exp Ther 208, 190–194.

    PubMed  CAS  Google Scholar 

  • Mosberg H. I., Hurst R., Hruby V. J., Gee K., Akiyama K., Yamamura M I., Galligan J. J., and Burks T. F. (1983) Cyclic pennicillamine containing enkephalin analogs displays profound delta receptor selectivities. Life Sci. 33, 447–450.

    PubMed  CAS  Google Scholar 

  • Murrin L. C, Coyle J. T., and Kuhar M. J. (1980) Striatal opiate receptors. Pre-and postsynaptic localization Life Sci 27, 1175–1183

    PubMed  CAS  Google Scholar 

  • Nowycky M. C., Walters J, R, and Roth R. H. (1978) Dopaminergic neurons: Effect of acute and chronic morphine administration on single cell activity and transmitter metabolism. J. Neural. Transm. 49, 99–116.

    Google Scholar 

  • Pasternak G. W. and Snyder S. H. (1975a) Opiate receptor binding: Enzymatic treatments that discriminate between agonist and antagonist interactions. Mol. Pharmacol. 11, 478–484.

    CAS  Google Scholar 

  • Pasternak G. W. and Snyder S. H. (1975b) Identification of novel high-affinity opiate receptor binding in rat brain. Nature (Lond.) 253, 563–565.

    CAS  Google Scholar 

  • Pasternak G. W. (1980) Multiple opiate receptors. [3H]-Ethylketocyclazotine receptor binding and ketocyclazocine analgesia. Proc. Natl. Acad. Sci. USA 77, 3691–3694.

    PubMed  CAS  Google Scholar 

  • Pasternak G. W., Carroll-Buatti M., and Spiegel K. (1981) The binding and analgesic properties of a sigma opiate, SKF 10047 J. Pharmacol. Exp. Ther. 219, 192–198.

    PubMed  CAS  Google Scholar 

  • Pasternak G W. (1982) High and low affinity opioid binding sites Relationship to mu and delta sites. Life Sci. 31, 1303–1306.

    PubMed  CAS  Google Scholar 

  • Pert C.B and Snyder S H (1973) Properties of opiate-receptor binding in rat brain. Proc. Natl. Acad. Sci. USA 70, 2243–2247.

    PubMed  CAS  Google Scholar 

  • Pert C. B. and Snyder S. H. (1974) Opiate receptor binding of agonists and antagonists affected differentially by sodium. Mol. Pharmacol. 10, 868–879.

    CAS  Google Scholar 

  • Pert C. B. and Taylor D (1979) Type 1 and Type 2 Opiate Receptors; A Subclassification Scheme Based upon GTP’s Differential Effects on Binding, in Endogenous and Exogenous Opiate Agonists and Antagonists (Way E. L., ed.) pp. 87–90, Pergamon, New York.

    Google Scholar 

  • Pfeiffer A. and Herz A. (1981) Demonstration and distribution of an opiate binding site in rat brain with high affinity for ethylketocyclazotine and SKF 10047. Biochem. Biophys. Res. Commun. 101, 38–44

    PubMed  CAS  Google Scholar 

  • Pfeiffer A., Pasi A., Mehraein P, and Herz A. (1981) A subclassification of κ-sites in human brain by use of dynorphin 1–17 Neurupeptides 2, 89–97.

    CAS  Google Scholar 

  • Pfeiffer A. and Herz A (1982) Discrimination of three opiate-receptor binding sites with the use of a computerized curve-fitting technique Mol. Pharmacol. 21, 266–671.

    PubMed  CAS  Google Scholar 

  • Pilapil C. and Wood P L. (1983) [3H]-SKE 10047 binding to rat brain membranes: Evidence for kappa rsoreceptors. Life Sci. 33, 263–265.

    PubMed  CAS  Google Scholar 

  • Pollard H., Llorens C., and Schwartz J. C. (1977) Enkephalin receptors on dopammergic neurons in rat striatum. Nature (Lond.) 268, 745–747.

    CAS  Google Scholar 

  • Pollard H., Llorens C., Schwartz J. C, Gros C, and Dray F (1978) Localization of opiate receptors and enkephalins in the rat striatum in relationship with the nigrostriatal dopaminergic system. Lesion studies. Brain Res 151, 392–398.

    PubMed  CAS  Google Scholar 

  • Quirion R, Hammer R. P., Herkenham M., and Pert C B (1981) Phencyclidine (angel dust) σ “opiate” receptor. Visualization by trrtium-sensitive film. Proc. Natl Acad Sci. USA 78, 5881–5885

    PubMed  CAS  Google Scholar 

  • Quirion R., Bowen W.D., Herkenham M,and Pert C B. (1982) Visualization and solubilization of rat brain opiate receptors with a “κ” ligand selectivity pattern. Cell Mol Neurobiol. 2, 333–346.

    PubMed  CAS  Google Scholar 

  • Robson L E. and Kosterhtz H W (1979) Specific protection of the binding sites of D-Ala2-D-Leu enkephalin (δ-receptors) and drhydromorphine (μ-receptors). Proc Roy. Soc. Land. (B.) 205, 425–432

    CAS  Google Scholar 

  • Robson L. E, Gillan M G C., McKnight A T, and Kosterlitz H. W (1983) [3H]-Dynorphin A(1–9). Binding characteristics and degradation profile in brain homogenates. Life Sci 33, 283–286.

    PubMed  CAS  Google Scholar 

  • Roemer D., Buscher H., Hill R. C, Maurer R., Petcher T. J, Welle H B. A, Bake1 H. C. E. K., and Akkerman A. M. (1980) Bramazocine. A potent long-acting opiate kappa-agonist. Life Sci. 27, 971–978.

    CAS  Google Scholar 

  • Sadee W., Rosenbaum J. S, and Herz A. (1982) Buprenorphine. Differential interaction with opiate receptor subtypes in VIVO. J. Pharmacol Exp. Ther 223, 157–162.

    PubMed  CAS  Google Scholar 

  • Schmidt D. E. and Buxbaum D. M. (1978) Effect of acute morphine administration on regional acetylcholine turnover in the rat Brain Res. 147, 194–200.

    PubMed  CAS  Google Scholar 

  • Schubert D. P., Wuster M., Stoiber R, and Herz A. (1981) A selective distribution of different opiate receptors in certain areas of rat brain as revealed by in vitro autoradiography. Neurosci. Lett 21, 119–124.

    PubMed  Google Scholar 

  • Simantov R., Childers S. R, and Snyder S. H. (1978) The opiate receptor interaction of [3H]-methionine enkephalin. An opioid peptide. Eur J. Pharmacol. 47, 319–331.

    PubMed  CAS  Google Scholar 

  • Simon E. J., Hiller J. M, and Edelman I. (1973) Stereospecific binding of the potent narcotic analgesic [3H]-etorphine to rat brain homogenate. Proc. Natl. Acad. Sci. USA 70, 1947–1949.

    PubMed  CAS  Google Scholar 

  • Simon E J., Hiller J. M., Edelman I, Groth J., and Stahl K. D. (1975a) Opiate receptors and their interactions with agonists and antagonists. Life Sci. 16, 1795–1800.

    PubMed  CAS  Google Scholar 

  • Simon E. J., Hiller J M, Groth J,and Edelman I (1975b) Further properties of stereospecific opiate binding sites in rat brain On the nature of the sodium effect J. Pharmacol Exp Ther. 192, 531–537.

    PubMed  CAS  Google Scholar 

  • Slater P. and Blundell C. (1979) Effects of morphine on amphetamine-induced circling and striatal cyclic AMP in rats and mice Neuropharmacology 18, 705–708.

    PubMed  CAS  Google Scholar 

  • Smith J. R. and Simon E. J. (1980) Selective protection of sterospecific enkephalin and opiate binding against inactivation by N-Ethylmaleimidine. Evidence for two classes of opiate receptors. Proc Natl. Acad. Sci USA 77, 281–284.

    PubMed  CAS  Google Scholar 

  • Snyder S. H. and Goodman R. R. (1980) Multiple neurotransmitter receptors. J. Neurochem. 35, 5–15

    PubMed  CAS  Google Scholar 

  • Spiegel K., Kourides I. A., and Pasternak G. W. (1982) Different receptors mediate morphine-induced prolactin and growth hormone release. Life Sci 31, 2177–2180

    PubMed  CAS  Google Scholar 

  • Spiegel K. and Pasternak G. W. (1984) Meptazmol: A novel mu-1 selective opiodal analgesic. J Pharmacol. Exp. Ther. 228, 414–419.

    PubMed  CAS  Google Scholar 

  • Sugrue M. F. (1974) The effects of acutely administered analgesics on the turnover of noradrenaline and dopamine in various regions of the rat brain Brit. J Pharmacol. 52, 159–165

    CAS  Google Scholar 

  • Tepper P. and Woods J. H. (1978) Changes in locomotor activity and naloxone-induced lumping in mice produced by WIN 35, 197–2 (ethylketazocme), and morphine Psychopharmacology 58, 125–129

    PubMed  CAS  Google Scholar 

  • Trabucchi M., Poll A, Tonon G. C, and Spano P F. (1978) Interaction Among Enkephalinergic and Dopammergic Systems in Stiatum and Limbic Forebrain, in Catecholamines: Basic and Clinical frontiers (Usdin E, Kopin I J., and Barchas J., eds) Pergamon Press, New York, pp. 1053–1055.

    Google Scholar 

  • Watson S. J., Akil H., Richard C W., and Barchas J. D. (1978) Evidence for two separate opiate peptide neuronal systems and the coexistence of β-lipotropin, β-endorphin, and ACTH immuno-reactivities in the same hypothalamus neurons. Nature (Lond.) 275, 226–228

    CAS  Google Scholar 

  • Ward S J, Metclaf G., and Rees J M. H (1978) Effects of μ-, κ-, and δ-agonists in rodents. Develop. Neurosci 4, 497–498.

    Google Scholar 

  • Wolozin B. L., Nishimura S, and Pasternak G. W. (1982) The binding of κ-, and δ-opiates in rat brain J. Neuroscience 2, 708–713.

    CAS  Google Scholar 

  • Wong D. T. and Horng J. S (1977) Affinities of opiate agonists and antagonists for enkephalin receptors of rat brain. Res Commun. Chem. Path. Pharmacol 16, 749–752

    CAS  Google Scholar 

  • Wood P L., Cheney D. L, and Costa E. (1979) An investigation of whether septal γ-aminobutyrate-containing interneurons are involved in the reduction of the turnover rate of acetylcholine elicited by substance P and β-endorphin in the hippocampus. Neuroscience 4, 1479–1484.

    PubMed  CAS  Google Scholar 

  • Wood P. L and Stotland L M. (1980) Actions of enkephalin mu and partial agonist and analgesics on acetylcholine turnover in rat brain. Neuropharmacology 19, 975–982.

    PubMed  CAS  Google Scholar 

  • Wood P. L., Stotland M., Richard J. W., and Rackham A. (1980) Actions of mu, kappa, sigma, delta, and agonist/antagonist opiates on striatal dopaminergic function J Pharmacol. Exp. Ther 215, 697–703.

    PubMed  CAS  Google Scholar 

  • Wood P. L. and Rackham A (1981) Actions of kappa, sigma, and partial mu narcotic receptor agonists on rat brain acetylcholine turnover Neurosci Lett. 23, 75–80.

    PubMed  CAS  Google Scholar 

  • Wood P. L, Charleson S., Lane D, and Hudgin R L. (1981) Multiple opiate receptors Differential binding of mu, kappa, and delta agonists. Neuropharmacology 20, 1215–1220.

    PubMed  CAS  Google Scholar 

  • Wood P. L. (1982) Multiple opiate receptors Support of unique mu, delta, and kappa sites. Neuropharmacology 21, 487–497.

    PubMed  CAS  Google Scholar 

  • Wood P. L. and Richard J. W. (1982) Morphine and nigrostriatal function in the rat and mouse: Role of nigral and striatal opiate receptors. Neuropharmacology 21, 1305–1310.

    PubMed  CAS  Google Scholar 

  • Wood P. L. and Charleson S. (1982) High affinity [3H]-ethylketazocine binding: Evidence for specific κ receptors. Neuropharmacology 21, 215–219.

    PubMed  CAS  Google Scholar 

  • Wood P. L, Richard J. W, and Thakur M. (1982) Muopiate isoreceptors. Differentiation with kappa agonists. Life Sci. 31, 2313–2317.

    PubMed  CAS  Google Scholar 

  • Wood P. L. and Pasternak G. W. (1983) Specific μ2 isoreceptor regulation of nigrostriatal neurons. In vivo evidence with naloxonazine. Neurosci Lett. 36, 291–293.

    Google Scholar 

  • Wood P. L., Sanschagrin D., Richard J. W., and Thakur M (1983a) Multiple receptor affinities of kappa and agonist/antagonist analgesics: In vlvo assessment J. Pharmacol. Exp. Ther. 226, 545–550.

    PubMed  CAS  Google Scholar 

  • Wood P. L., McGuade P., Richard J. W., and Thakur M (1983b) Agonist/antagonist analgesics and nigrostriatal dopamine metabolism in the rat: Evidence for receptor dualism. Life Sci. 33, 759–762.

    PubMed  CAS  Google Scholar 

  • Wood P. L. (1983a) Oplold receptor affinities of kappa agonists, angonist/antagonists and antagonists in vitro and in vivo. Prog NeuroPsychopharmucol Biol. Psychiat 7, 657–662.

    CAS  Google Scholar 

  • Wood P. L. (1983b) Opioid regulation of CNS dopaminerglc pathways A review of methodology, receptor types, regional variations, and species differences Peptides 4, 595–601.

    PubMed  CAS  Google Scholar 

  • Wood P. L. and Pilapil C. (1983) κ-Opiate receptor sites: Unique heat stability in vitro. Eur. J Pharmacol 88, 281–282.

    PubMed  CAS  Google Scholar 

  • Wood P. L. (1984a) Kappa agonist analgesics: Evidence for μ2 and δ opioid receptor antagonism. Drug Develop Res 4, 429–435.

    CAS  Google Scholar 

  • Wood P. L. (1984b) Animal Models in Analgesic Testing, in Analgesics Neurochemical, Behavioral, and Clinical Perspectives (Kuhar M. and Pasternak G, eds.) Raven Press, New York, pp. 175–194.

    Google Scholar 

  • Wood P L, Stotland L M., and Rackham A. (1984a) Opiate Receptor Regulation of Acetylcholine Metabolism. Role of Mu, Delta, Kappa, and Sigma Narcotic Receptors, in Dynamics of Neurotransmitter Function (Hannin I., ed.) Raven Press, New York, pp 99–107

    Google Scholar 

  • Wood P. L., Pilapil C, Thakur M., and Richard J. W. (1984b) WIN 44441 A stereospecific and long-acting narcotic antagonist Pharmaceut Res. 1, 46–48.

    Google Scholar 

  • Woods J.H., Fly C L.,and Swam H H (1978) Behavioral actions of some N-fury1 benzomorphans and ketazocines in rhesus monkeys and mice. Develop Neurosci. 4, 403–411.

    CAS  Google Scholar 

  • Young E., Walker J M, Houghten R, and Akil H. (1983) [3H]-Dynorphin binding to guinea pig and rat brain Life Sci. 33, 287–290.

    PubMed  CAS  Google Scholar 

  • Zsilla G., Cheney D. L, Racagni G., and Costa E. (1976) Correlation between analgesia and the decrease of acetylcholine turnover rate in cortex and hlppocampus elicited by morphine, mependme, vimino1 R2, and azidomorphine. J. Pharmacol. Exp Ther. 199, 662–668.

    PubMed  CAS  Google Scholar 

  • Zsilla G., Racagni G., Cheney D. L., and Costa E. (1977) Constant rate infusion of deuterated phosphorylcholine to measure the effects of morphine on acetylcholine turnover rate in specific nuclei of rat brain. Neuropharmacology 16, 25–31.

    PubMed  CAS  Google Scholar 

  • Zukin S. R. and Zukin R. S. (1979) Specific [3H]-phencyclidine binding in rat central nervous system. Proc Natl. Acad. Sci. USA 76, 5372–5376

    PubMed  CAS  Google Scholar 

  • Zukin R. S. and Zukin S R. (1981) Multiple opiate receptors. Emerging concepts, Life Sci. 29, 2681–2690.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Alan A. Boulton Glen B. Baker Pavel D. Hrdina

Rights and permissions

Reprints and permissions

Copyright information

© 1986 The Humana Press Inc.

About this protocol

Cite this protocol

Wood, P.L. (1986). Multiple Opioid Receptors in the Central Nervous System. In: Boulton, A.A., Baker, G.B., Hrdina, P.D. (eds) Receptor Binding. Neuromethods, vol 4. Humana Press. https://doi.org/10.1385/0-89603-078-4:329

Download citation

  • DOI: https://doi.org/10.1385/0-89603-078-4:329

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-078-7

  • Online ISBN: 978-1-59259-609-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics