Skip to main content

Apoptosis and Mitochondrial Dysfunction in Lymphocytes of Patients With Systemic Lupus Erythematosus

  • Protocol
Autoimmunity

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 102))

Summary

Systemic lupus erythematosus (SLE) is characterized by abnormal activation and cell death signaling within the immune system. Activation, proliferation, or death of cells of the immune system are dependent on controlled reactive oxygen intermediate (ROI) production and ATP synthesis in mitochondria. The mitochondrial transmembrane potential (ΔΨm) reflects the energy stored in the electrochemical gradient across the inner mitochondrial membrane, which in turn is used by F0F1-ATPase to convert adenosine 5′-diphosphate to ATP during oxidative phosphorylation. Mitochondrial hyperpolarization and transient ATP depletion represent early and reversible steps in T-cell activation and apoptosis. By contrast, T lymphocytes of patients with SLE exhibit elevated ΔΨm, that is, persistent mitochondrial hyperpolarization, cytoplasmic alkalinization, increased ROI production, as well as diminished levels of intracellular glutathione and ATP. Oxidative stress affects signaling through the T-cell receptor as well as the activity of redox-sensitive caspases. ATP depletion may be responsible for diminished activation-induced apoptosis and sensitize lupus T cells to necrosis. Mitochondrial dysfunction is identified as a key mechanism in the pathogenesis of SLE.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Elkon, K. B. (1994) Apoptosis in SLE–too little or too much? Clin. Exp. Rheumatol. 12, 553–559.

    PubMed  CAS  Google Scholar 

  2. Perl, A. and Banki, K. (1999) Molecular mimicry, altered apoptosis, and immunomodulation as mechanisms of viral pathogenesis in systemic lupus erythematosus, in Lupus: Molecular and Cellular Pathogenesis (Kammer, G. M. and Tsokos, G. C., eds.), Humana Press, Totowa, NJ, pp. 43–64.

    Google Scholar 

  3. Cohen, J. J., Duke, R. C., Fadok, V. A., and Sellins, K. S. (1992) Apoptosis and programmed cell death in immunity. Annu. Rev. Immunol. 10, 267–293.

    Article  PubMed  CAS  Google Scholar 

  4. Thompson, C. B. (1995) Apoptosis in the pathogenesis and treatment of disease. Science 267, 1456–1462.

    Article  PubMed  CAS  Google Scholar 

  5. Emlen, W., Niebur, J. A., and Kadera, R. (1994) Accelerated in vitro apoptosis of lymphocytes from patients with systemic lupus erythematosus. J. Immunol. 152, 3685–3692.

    PubMed  CAS  Google Scholar 

  6. Casciola-Rosen, L. A., Anhalt, G., and Rosen, A. (1994) Autoantigens targeted in systemic lupus erythematosus are clustered in two populations of surface structures on apoptotic keratinocytes. J. Exp. Med. 179, 1317–1330.

    Article  PubMed  CAS  Google Scholar 

  7. Kovacs, B., Vassilopoulos, D., Vogelgesang, S. A., and Tsokos, G. C. (1996) Defective CD3-mediated cell death in activated T cells from patients with systemic lupus erythematosus: role of decreased intracellular TNF-alpha. Clin. Immunol. Immunopathol. 81, 293–302.

    Article  PubMed  CAS  Google Scholar 

  8. Skulachev, V. P. (1999) Mitochondrial physiology and pathology; concepts of programmed death of organelles, cells and organisms. Mol. Aspects Med. 20, 139–140.

    Article  PubMed  CAS  Google Scholar 

  9. Xiang, J., Chao, D. T., and Korsmeyer, S. J. (1996) BAX-induced cell death may not require interleukin 1b-converting enzyme-like proteases. Proc. Natl. Acad. Sci. USA 93, 14,559–14,563.

    Article  PubMed  CAS  Google Scholar 

  10. Susin, S. A., Zamzami, N., Castedo, M., Daugas, E., Wang, H.-G., Geley, S., et al. (1997) The central executioner of apoptosis: multiple connections between protease activation and mitochondria in Fas/Apo-1/CD95-and ceramide-induced apoptosis. J. Exp. Med. 186, 25–37.

    Article  PubMed  CAS  Google Scholar 

  11. Vander Heiden, M., Chandel, N. S., Williamson, E. K., Schumaker, P. T., and Thompson, C. B. (1997) Bcl-XL regulates the membrane potential and volume homeostasis of mitochondria. Cell 91, 627–637.

    Article  Google Scholar 

  12. Constantini, P., Chernyak, B. V., Petronilli, V., and Bernardi, P. (1996) Modulation of the mitochondrial permeability transition pore by pyridine nucleotides and dithiol oxidation at two separate sites. J. Biol. Chem. 271, 6746–6751.

    Article  Google Scholar 

  13. Mayes, P. A. (1993) The pentose phosphate pathway and other pathways of hexose metabolism, in Harper’s Biochemistry (Murray, R. K., Granner, D. K., Mayes, P. A., and Rodwell, V. W., eds.), Appleton and Lange, Norwalk, CT, pp. 201–211.

    Google Scholar 

  14. Banki, K., Hutter, E., Colombo, E., Gonchoroff, N. J., and Perl, A. (1996) Glutathione levels and sensitivity to apoptosis are regulated by changes in transaldolase expression. J. Biol. Chem. 271, 32,994–33,001.

    Article  PubMed  CAS  Google Scholar 

  15. Banki, K., Hutter, E., Gonchoroff, N., and Perl, A. (1999) Elevation of mitochondrial transmembrane potential and reactive oxygen intermediate levels are early events and occur independently from activation of caspases in Fas signaling. J. Immunol. 162, 1466–1479.

    PubMed  CAS  Google Scholar 

  16. Perl, A., Gergely, P., Jr., Puskas, F., and Banki, K. (2002) Metabolic switches of T-cell activation and apoptosis. Antioxid. Redox Signal. 4, 427–443.

    Article  PubMed  CAS  Google Scholar 

  17. Meier, B., Radeke, H. H., Selle, S., Younes, M., Sies, H., Resch, K., et al. (1989) Human fibroblasts release reactive oxygen species in response to interleukin-1 or tumor necrosis factor-α. Biochem. J. 263, 539–545.

    PubMed  CAS  Google Scholar 

  18. Hennet, T., Richter, C., and Peterhans, E. (1993) Tumor necrosis factor-α induces superoxide anion generation in mitochondria of L929 cells. Biochem. J. 289, 587–592.

    PubMed  CAS  Google Scholar 

  19. Schulze-Osthoff, K., Krammer, P. H., and Droge, W. (1994) Divergent signaling via APO-1/Fas and the TNF receptor, two homologous molecules involved in physiological cell death. EMBO J. 13, 4587–4596.

    PubMed  CAS  Google Scholar 

  20. Gergely, P., Nekam, K., Lang, I., Kalmar, L., Gonzalez-Cabello, R., and Perl, A. (1984) Ketoconazole in vitro inhibits mitogen-induced blastogenesis, antibodydependent cellular cytotoxicity, natural killer activity and random migration of human leukocytes. Immunopharmacology 7, 167–170.

    Article  PubMed  CAS  Google Scholar 

  21. Williams, M. S. and Henkart, P. A. (1996) Role of reactive oxygen intermediates in TCR-induced death of T cell blasts and hybridomas. J. Immunol. 157, 2395–2402.

    PubMed  CAS  Google Scholar 

  22. Gulbins, E., Brenner, B., Schlottmann, K., Welsch, J., Heinle, H., Koppenhoefer, U. L., et al. (1996) Fas-induced programmed cell death is mediated by a Rasregulated O2-synthesis. Immunology 89, 205–212.

    Article  PubMed  CAS  Google Scholar 

  23. Um, H. D., Orenstein, J. M., and Wahl, S. M. (1996) Fas mediates apoptosis in human monocytes by a reactive oxygen intermediate dependent pathway. J. Immunol. 156, 3469–3477.

    PubMed  CAS  Google Scholar 

  24. Puskas, F., Gergely, P., Banki, K., and Perl, A. (2000) Stimulation of the pentose phosphate pathway and glutathione levels by dehydroascorbate, the oxidized form of vitamin C. FASEB J. 14, 1352–1361.

    Article  PubMed  CAS  Google Scholar 

  25. Li, P.-F., Dietz, R., and von Harsdorf, R. (1999) p53 regulates mitochondrial membrane potential through reactive oxygen species and induces cytochrome c-independent apoptosis blocked by bcl-2. EMBO J. 18, 6027–6036.

    Article  PubMed  CAS  Google Scholar 

  26. Gottlieb, E., Vander Heiden, M. G., and Thompson, C. B. (2000) Bcl-XL prevents the initial decrease in mitochondrial membrane potential and subsequent reactive oxygen species production during tumor necrosis factor alpha-induced apoptosis. Mol. Cell. Biol. 20, 5680–5689.

    Article  PubMed  CAS  Google Scholar 

  27. Scarlett, J. L., Sheard, P. W., Hughes, G., Ledgerwood, E. C., Ku, H.-H., and Murphy, M. P. (2000) Changes in mitochondrial membrane potential during staurosporin-induced apoptosis in Jurkat cells. FEBS Lett. 475, 267–272.

    Article  PubMed  CAS  Google Scholar 

  28. Sanchez-Alcazar, J. A., Ault, J. G., Khodjakov, A., and Schneider, E. (2000) Increased mitochondrial cytochrome c levels and mitochondrial hyperpolarization precede camptothecin-induced apoptosis in Jurkat cells. Cell Death Differ. 7, 1090–1100.

    Article  PubMed  CAS  Google Scholar 

  29. Almeida, A., Almeida, J., Bolanos, J. P., and Moncada, S. (2001) Different responses of astrocytes and neurons to nitric oxide: the role of glycolytically generated ATP in astrocyte protection. Proc. Natl. Acad. Sci. USA 98, 15,294–15,299.

    Article  PubMed  CAS  Google Scholar 

  30. Tewari, M. and Dixit, V. M. (1995) Fas-and tumor necrosis factor-induced apoptosis is inhibited by the Poxvirus crmA gene product. J. Biol. Chem. 270, 3255–3260.

    Article  PubMed  CAS  Google Scholar 

  31. Los, M., Van de Craen, M., Penning, L. S., Schenk, H., Westendorp, M., Baeuerle, P. A., et al. (1995) Requirement of an ICE/CED-3 protease for Fas/Apo-1-mediated apoptosis. Nature 375, 81–83.

    Article  PubMed  CAS  Google Scholar 

  32. Enari, M., Hug, H., and Nagata, S. (1995) Involvement of an ICE-like protease in Fas-mediated apoptosis. Nature 375, 78–81.

    Article  PubMed  CAS  Google Scholar 

  33. Salvesen, G. S. and Dixit, V. M. (1997) Caspases: intracellular signaling by proteolysis. Cell 91, 443–446.

    Article  PubMed  CAS  Google Scholar 

  34. Gross, A., McDonnell, J. M., and Korsmeyer, S. J. (1999) BCL-2 family members and the mitochondria in apoptosis. Genes Dev. 13, 1899–1911.

    Article  PubMed  CAS  Google Scholar 

  35. Banki, K., Hutter, E., Gonchoroff, N. J., and Perl, A. (1998) Molecular ordering in HIV-induced apoptosis: oxidative stress, activation of caspases, and cell survival are regulated by transaldolase. J. Biol. Chem. 273, 11,944–11,953.

    Article  PubMed  CAS  Google Scholar 

  36. Gergely, P. J., Grossman, C., Niland, B., Puskas, F., Neupane, H., Allam, F., et al. (2002) Mitochondrial hyperpolarization and ATP depletion in patients with systemic lupus erythematosus. Arthritis Rheum. 46, 175–190.

    Article  PubMed  CAS  Google Scholar 

  37. Gergely, P. J., Niland, B., Gonchoroff, N., Pullmann, R., Jr., Phillips, P. E., and Perl, A. (2002) Persistent mitochondrial hyperpolarization, increased reactive oxygen intermediate production, and cytoplasmic alkalinization characterize altered IL-10 signaling in patients with systemic lupus erythematosus. J. Immunol. 169, 1092–1101.

    PubMed  CAS  Google Scholar 

  38. Stryer, L. (1988) Biochemistry, Freeman, New York, pp. 397–426.

    Google Scholar 

  39. Leist, M., Single, B., Castoldi, A. F., Kuhnle, S., and Nicotera, P. (1997) Intracellular adenosine triphosphate (ATP) concentration: a switch in the decision between apoptosis and necrosis. J. Exp. Med. 185, 1481–1486.

    Article  PubMed  CAS  Google Scholar 

  40. Lee, Y. and Shacter, E. (1999) Oxidative stress inhibits apoptosis in human lymphoma cells. J. Biol. Chem. 274, 19,792–19,798.

    Article  PubMed  CAS  Google Scholar 

  41. Chow, S. C., Kass, G. E. N., and Orrenius, S. (1997) Purine and their role in apoptosis. Neuropharmacology 36, 1149–1156.

    Article  PubMed  CAS  Google Scholar 

  42. Lewis, R. S. (2001) Calcium signaling mechanisms in T lymphocytes. Annu. Rev. Immunol. 19, 497–521.

    Article  PubMed  CAS  Google Scholar 

  43. LaNoue, K. F. and Duszynski, J. (1992) Kinetic studies of ATP synthase: the case for the positional change mechanism. J. Bioenerg. Biomembr. 24, 499–506.

    Article  PubMed  CAS  Google Scholar 

  44. McConkey, D. J. and Orrenius, S. (1996) The role of calcium in the regulation of apoptosis. J. Leukoc. Biol. 59, 775–783.

    PubMed  CAS  Google Scholar 

  45. Hamilos, D. L. and Wedner, H. J. (1985) The role of glutathione in lymphocyte activation. I. Comparison of inhibitory effects of buthionine sulfoximine and 2-cyclohexene-1-one by nuclear size transformation. J. Immunol. 135, 2740–2747.

    PubMed  CAS  Google Scholar 

  46. Suthanthiran, M., Anderson, M. E., Sharma, V. K., and Meister, A. (1990) Glutathione regulates activation-dependent DNA synthesis in highly purified normal human T lymphocytes stimulated via the CD2 and CD3 antigens. Proc. Natl. Acad. Sci. USA 87, 3343–3347.

    Article  PubMed  CAS  Google Scholar 

  47. Salvemini, F., Franze, A., Iervolino, A., Filosa, S., Salzano, S., and Ursini, M. V. (1999) Enhanced glutathione levels and oxidoresistance mediated by increased glucose-6-phosphate dehydrogenase expression. J. Biol. Chem. 274, 2750–2757.

    Article  PubMed  CAS  Google Scholar 

  48. Le Moine, O., Louis, H., Stordeur, P., Collet, J. M., Goldman, M., and Deviere, J. (1997) Role of reactive oxygen intermediates in interleukin 10 release after cold liver ischemia and reperfusion in mice. Gastroenterology 113, 1701–1706.

    Article  PubMed  Google Scholar 

  49. al Janadi, M., al Balla, S., al Dalaan, A., and Raziuddin, S. (1993) Cytokine profile in systemic lupus erythematosus, rheumatoid arthritis, and other rheumatic diseases. J. Clin. Immunol. 13, 58–67.

    Article  Google Scholar 

  50. Studnicka-Benke, A., Steiner, G., Petera, P., and Smolen, J. S. (1996) Tumour necrosis factor alpha and its soluble receptors parallel clinical disease and autoimmune activity in systemic lupus erythematosus. Br. J. Rheumatol. 35, 1067–1074.

    Article  PubMed  CAS  Google Scholar 

  51. Swaak, A. J., van den Brink, H. G., and Aarden, L. A. (1996) Cytokine production (IL-6 and TNF alpha) in whole blood cell cultures of patients with systemic lupus erythematosus. Scand. J. Rheumatol. 25, 233–238.

    Article  PubMed  CAS  Google Scholar 

  52. Handwerger, B. S., Luzina, I., Da Silva, L., Storrer, C. E., and Via, C. S. (1999) Cytokines in the immunopathogenesis of lupus, in Lupus: Molecular and Cellular Pathogenesis (Kammer, G. S. and Tsokos, G. C., eds.) Humana, Totowa, NJ, pp. 321–340.

    Google Scholar 

  53. Otsuji, M., Kimura, Y., Aoe, T., Okamoto, Y., and Saito, T. (1996) Oxidative stress by tumor-derived macrophages suppresses the expression of CD3 zeta chain of T-cell receptor complex and antigen-specific T-cell responses. Proc. Natl. Acad. Sci. USA 93, 13,119–13,124.

    Article  PubMed  CAS  Google Scholar 

  54. Liossis, S. N., Ding, X. Z., Dennis, G. J., and Tsokos, G. C. (1998) Altered pattern of TCR/CD3-mediated protein-tyrosyl phosphorylation in T cells from patients with systemic lupus erythematosus. Deficient expression of the T cell receptor zeta chain. J. Clin. Invest. 101, 1448–1457.

    Article  PubMed  CAS  Google Scholar 

  55. Li, D., Yang, B., and Mehta, J. L. (1998) Ox-LDL induces apoptosis in human coronary artery endothelial cells: role of PKC, PTK, bcl-2, and Fas. Am. J. Physiol. 275, H568–H576.

    PubMed  CAS  Google Scholar 

  56. Orlinick, J. R., Vaishnaw, A., Elkon, K. B., and Chao, M. V. (1997) Requirement of cysteine-rich repeats of the Fas receptor for binding of the Fas ligand. J. Biol. Chem. 272, 28,889–28,894.

    Article  PubMed  CAS  Google Scholar 

  57. Bennett, M., Macdonald, K., Chan, S.-W., Luzio, J. P., Simari, R., and Weissberg, P. (1998) Cell surface trafficking of Fas: a rapid mechanism of p53-induced apoptosis. Science 282, 290–293.

    Article  PubMed  CAS  Google Scholar 

  58. Kasibhatla, S., Genestier, L., and Green, D. R. (1999) Regulation of Fas ligand expression during activation-induced cell death in T lymphocytes. J. Biol. Chem. 274, 987–992.

    Article  PubMed  CAS  Google Scholar 

  59. He, J., Choe, S., Walker, R., Di Marzio, P., Morgan, D. O., and Landau, N. R. (1995) Human immunodeficiency virus type 1 viral protein R (vpr) arrests cells in the G2 phase of the cell cycle by inhibiting p34cdc2 activity. J. Virol. 69, 6705–6711.

    PubMed  CAS  Google Scholar 

  60. Lorenz, H. M., Grunke, M., Hieronymus, T., Herrmann, M., Kuhnel, A., and Manger, B. (1997) In vitro apoptosis and expression of apoptosis-related molecules in lymphocytes from patients with systemic lupus erythematosus and other autoimmune diseases. Arthritis Rheum. 40, 306–317.

    Article  PubMed  CAS  Google Scholar 

  61. Georgescu, L., Vakkalanka, R. K., Elkon, K. B., and Crow, M. K. (1997) Interleukin-10 promotes activation-induced cell death of SLE lymphocytes mediated by Fas ligand. J. Clin. Invest. 100, 2622–2633.

    Article  PubMed  CAS  Google Scholar 

  62. Oates, J. C., Christensen, E. F., Reilly, C. M., Self, S. E., and Gilkeson, G. S. (1999) Prospective measure of serum 3-nitrotyrosine levels in systemic lupus erythematosus: correlation with disease activity. Proc. Assoc. Am. Phys. 111, 611–621.

    Article  PubMed  CAS  Google Scholar 

  63. Cooper, G. S., Dooley, M. A., Treadwell, E. L., St. Clair, E. W., Parks, C. G., and Gilkeson, G. S. (1998) Hormonal, environmental, and infectious risk factors for developing systemic lupus erythematosus. Arthritis Rheum. 41, 1714–1724.

    Article  PubMed  CAS  Google Scholar 

  64. Sen, C. K. and Packer, L. (1996) Antioxidant and redox regulation of gene transcription. FASEB J. 10, 709–720.

    PubMed  CAS  Google Scholar 

  65. Li, N. and Karin, N. (1999) Is NF-kB the sensor of oxidative stress? FASEB J. 13, 1137–1143.

    PubMed  CAS  Google Scholar 

  66. Blatt, N. B., Bednarski, J. J., Warner, R. E., Leonetti, F., Johnson, K. M., Boitano, A., et al. (2002) Benzodiazepine-induced superoxide signals B cell apoptosis: mechanistic insight and potential therapeutic utility. J. Clin. Invest. 110, 1123–1132.

    PubMed  CAS  Google Scholar 

  67. Lamarre, D., Talbot, B., De Murcia, G., LaPlante, C., LeDuc, Y., Mazen, A., et al. (1988) Structural and functional analysis of poly(ADP-ribose) polymerase: an immunological study. Biochim. Biophys. Acta 950, 147–160.

    PubMed  CAS  Google Scholar 

  68. Colombo, E., Banki, K., Tatum, A. H., Daucher, J., Ferrante, P., Murray, R. S., et al. (1997) Comparative analysis of antibody and cell-mediated autoimmunity to transaldolase and myelin basic protein in patients with multiple sclerosis. J. Clin. Invest. 99, 1238–1250.

    Article  PubMed  CAS  Google Scholar 

  69. Vermes, I., Haanen, C., Steffens-Nakken, H., and Reutelingsperger, C. (1995) A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled annexin V. J. Immunol. Meth. 184, 39–51.

    Article  CAS  Google Scholar 

  70. Martin, S. J., Reutelingsperger, C. P. M., McGahon, A. J., Rader, J. A., van Schie, C. A. A., LaFace, D. M., et al. (1995) Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: inhibition by overexpression of bcl-2 and Abl. J. Exp. Med. 182, 1545–1556.

    Article  PubMed  CAS  Google Scholar 

  71. Petit, P. X., O’Connor, J. E., Grunwald, D., and Brown, S. C. (1990) Analysis of the membrane potential of rat-and mouse-liver mitochondria by flow cytometry and possible applications. Eur. J. Biochem. 194, 389–397.

    Article  PubMed  CAS  Google Scholar 

  72. Tanner, M. K., Wellhausen, S. R., and Klein, J. B. (1993) Flow cytometric analysis of altered mononuclear cell transmembrane potential induced by cyclosporin. Cytometry 14, 59–69.

    Article  PubMed  CAS  Google Scholar 

  73. Smiley, S. T., Reers, M., Mottola-Hartshorn, C., Lin, M., Chen, A., Smith, T. W., et al. (1991) Intracellular heterogeneity in mitochondrial membrane potentials revealed by a J-aggregate-forming cation JC-1. Proc. Natl. Acad. Sci. USA 88, 3671–3675.

    Article  PubMed  CAS  Google Scholar 

  74. Cossarizza, A., Franceschi, C., Monti, D., Salvioli, S., Bellesia, E., Rivabene, R., et al. (1995) Protective effect of N-acetylcysteine in tumor necrosis factor-a-induced apoptosis in U937 cells: the role of mitochondria. Exp. Eye Res. 220, 232–240.

    CAS  Google Scholar 

  75. Royall, J. A. and Ischiropoulos, H. (1993) Evaluation of 2(,7(-dichlorofluorescein and dihydrorhodamine 123 as fluorescent probes for intracellular H2O2 in cultured endothelial cells. Arch. Biochem. Biophys. 302, 348–355.

    Article  PubMed  CAS  Google Scholar 

  76. Wieder, E. D., Hang, H., and Fox, M. H. (1993) Measurement of intracellular pH using flow cytometry with carboxy-SNARF-1. Cytometry 14, 916–921.

    Article  PubMed  CAS  Google Scholar 

  77. Fiers, W., Beyaert, R., Declercq, W., and Vandenabeele, P. (1999) More than one way to die: apoptosis, necrosis and reactive oxygen damage. Oncogene 18, 7719–7730.

    Article  PubMed  CAS  Google Scholar 

  78. Lundin, A. (2000) Use of firefly luciferase in ATP-related assays of biomass, enzymes, and metabolites. Meth. Enzymol. 305, 346–370.

    Article  PubMed  CAS  Google Scholar 

  79. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951) Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265–275.

    PubMed  CAS  Google Scholar 

  80. Lundin, A. (1994) ATP extractants neutralized by cyclodextrins, in Bioluminescence and Chemiluminescence (Campbell, A. K., Kricka, L. J., and Stanley, P. E., eds.) Wiley, Chichester, UK, pp. 399–402.

    Google Scholar 

  81. Fariss, M. W. and Reed, D. J. (1987) High-performance liquid chromatography of thiols and disulfides: dinitrophenol derivatives. Meth. Enzymol. 143, 101–109.

    Article  PubMed  CAS  Google Scholar 

  82. Towbin, H. H., Staehelin, T., and Gordon, J. (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA 76, 4350–4354.

    Article  PubMed  CAS  Google Scholar 

  83. Nicoletti, I., Migliorati, G., Pagliacci, M. C., Grignani, F., and Riccardi, C. (1991) A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J. Immunol. Meth. 139, 271–279.

    Article  CAS  Google Scholar 

  84. Nicholson, D. W., Ali, A., Thornberry, N. A., Vaillancourt, J. P., Ding, C. K., Gallant, M., et al. (1995) Identification and inhibition of ICE/CED-3 protease necessary for mammalian apoptosis. Nature 376, 37–43.

    Article  PubMed  CAS  Google Scholar 

  85. Armstrong, R. C., Aja, T., Xiang, J., Gaur, S., Krebs, J. F., Hoang, K., et al. (1996) Fas-induced activation of the cell death-related protease CPP32 is inhibited by bcl-2 and by ICE family protease inhibitors. J. Biol. Chem. 271, 16,850–16,855.

    Article  PubMed  CAS  Google Scholar 

  86. Eisner, M. D., Amory, J., Mullaney, B., Tierney, L., Jr., and Browner, W. S. (1996) Necrotizing lymphadenitis associated with systemic lupus erythematosus. Semin. Arthritis Rheum. 26, 477–482.

    Article  PubMed  CAS  Google Scholar 

  87. Llorente, L., Zou, W., Levy, Y., Richaud-Patin, Y., Wijdenes, J., Alcocer-Varela, J., et al. (1995) Role of interleukin 10 in the B lymphocyte hyperactivity and autoantibody production of human systemic lupus erythematosus. J. Exp. Med. 181, 839–844.

    Article  PubMed  CAS  Google Scholar 

  88. Green, J. M. and Thompson, C. B. (1994) Modulation of T cell proliferative response by accessory cell interactions. Immunol. Res. 13, 234–243.

    Article  PubMed  CAS  Google Scholar 

  89. Los, M., Schenk, H., Hexel, K., Baeuerle, P. A., Droge, W., and Schulze-Osthoff, K. (1995) IL-2 gene expression and NF-kappa B activation through CD28 requires reactive oxygen production by 5-lipoxygenase. EMBO J. 14, 3731–3740.

    PubMed  CAS  Google Scholar 

  90. Tatla, S., Woodhead, V., Foreman, J. C., and Chain, B. M. (1999) The role of reactive oxygen species in triggering proliferation and IL-2 secretion in T cells. Free Radic. Biol. Med. 26, 14–24.

    Article  PubMed  CAS  Google Scholar 

  91. Casciola-Rosen, L. A., Miller, D. K., Anhalt, G. J., and Rosen, A. (1994) Specific cleavage of the 70 kDa protein component of the U1 small nuclear ribonucleoprotein is a characteristic biochemical feature of apoptotic cell death. J. Biol. Chem. 269, 30,757–30,760.

    PubMed  CAS  Google Scholar 

  92. Perl, A. and Banki, K. (2000) Genetic and metabolic control of the mitochondrial transmembrane potential and reactive oxygen intermediate production in HIV disease. Antioxid. Redox Signal 2, 551–573.

    Article  PubMed  CAS  Google Scholar 

  93. Puskas, F., Gergely, P. J., Niland, B., Banki, K., and Perl, A. (2002) Differential regulation of hydrogen peroxide and Fas-dependent apoptosis pathways by dehydroascorbate, the oxidized form of vitamin C. Antioxid. Redox Signal 4, 358–369.

    Article  Google Scholar 

  94. Harada, H., Becknell, B., Wilm, M., Mann, M., Huang, L. J., Taylor, S. S., et al. (1999) Phosphorylation and inactivation of BAD by mitochondria-anchored protein kinase A. Mol. Cell 3, 413–422.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Perl, A., Nagy, G., Gergely, P., Puskas, F., Qian, Y., Banki, K. (2004). Apoptosis and Mitochondrial Dysfunction in Lymphocytes of Patients With Systemic Lupus Erythematosus. In: Perl, A. (eds) Autoimmunity. Methods in Molecular Medicine™, vol 102. Humana Press. https://doi.org/10.1385/1-59259-805-6:087

Download citation

  • DOI: https://doi.org/10.1385/1-59259-805-6:087

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-231-5

  • Online ISBN: 978-1-59259-805-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics