Skip to main content

Depletion of High-Abundance Proteins in Plasma by Immunoaffinity Substraction for Two-Dimensional Difference Gel Electrophoresis Analysis

  • Protocol
Cardiovascular Proteomics

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 357))

Abstract

Blood plasma is believed the most complex human-derived proteome, containing other tissue proteome subsets. Almost all body cells communicate with the plasma, either directly or through tissues or biological fluids, and many of these cells release at least a part of their content into the plasma upon damage or death. A comprehensive, systematic characterization of the plasma proteome in the healthy and diseased states will greatly facilitate the development of biomarkers for early disease detection, clinical diagnosis, and therapy. However, the characterization of human plasma proteome is a very complicated task, owing to the wide dynamic range of concentration that separates the most abundant proteins and the less common ones (10–12 orders of magnitude). The removal of its predominant proteins by affinity chromatography using an FPLC system improves the presence of low-abundance proteins in two-dimensional gel electrophoresis (2DE). The “Multiple Affinity Removal System” (Agilent Technologies) retains albumin, IgG, IgA, haptoglobin, transferrin, and antitrypsin with high specificity and reproducibility. After depletion, we have independently analyzed the flow-through (low-abundance proteins), and the retained fractions, by 2DE (4.0–7.0 pH range). Image analysis of the stained gels revealed that more than 300 spots appeared in the retained fraction and about 1800 spots appeared in the nonretained fraction. This methodology is a valuable tool for clinical proteomics, because its reproducibility allows comparative studies and quantitative analysis by 2DE or two-dimensional differential gel electrophoresis of plasma or sera samples from subjects with different pathological or physiological conditions. In addition, the method allows the comparison of experimental results from different laboratories.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vivanco, F., Martín-Ventura, J. L., Duran, M. C., et al. (2005) The quest for novel cardiovascular biomarkers by proteomic analysis. J. Proteome Res. 4, 1181–1191.

    Article  PubMed  CAS  Google Scholar 

  2. Anderson, N. L. and Anderson, N. G. (2002) The human plasma proteome: history, character, and diagnostic prospects. Mol. Cell. Proteomics 1, 845–867.

    Article  PubMed  CAS  Google Scholar 

  3. Ahmed, N. and Rice, G. E. (2005) Strategies for revealing lower abundance proteins in two-dimensional protein maps. J. Chromatogr. B. 815, 39–50.

    Article  CAS  Google Scholar 

  4. Yang, Z. and Hancock, W. S. (2004) Approach to the comprehensive analysis of glycoproteins isolated from human serum using a multi-lectin affinity column. J. Chromatogr. A. 1052, 79–88.

    Google Scholar 

  5. Marshall, J., Jankowski, A., Furesz, S., et al. (2004) Human serum proteins pre-separated by electrophoresis or chromatography followed by tandem mass spectrometry. J. Proteome Res. 3, 364–382.

    Article  PubMed  CAS  Google Scholar 

  6. Morita, A. and Szafranski, C. (2004) Differential Analysis of Ovarian Cancer Patient Serum Using the Multiple Affinity Removal System. Application, Agilent Technologies, 5989-1839EN, http://www.chem.agilent.com/. Last accessed July 2005.

  7. Chromy, B. A., Gonzales, A. D., Perkins, J., et al. (2004) Proteomic analysis of human serum by two-dimensional differential gel electrophoresis after depletion of high-abundant proteins. J. Proteome Res. 3, 1120–1127.

    Article  PubMed  CAS  Google Scholar 

  8. Gianazza, E. and Arnaud, P. (1982) A general method for fractionation of plasma proteins. Dye-ligand affinity chromatography on immobilized Cibacron blue F3-GA. Biochem. J. 201, 129–136.

    PubMed  CAS  Google Scholar 

  9. Tirumalai, R. S., Chan, K. C., Prieto, D. A., Issaq, H. J., Conrads, T. P., and Veenstra, T. D. (2003) Characterization of the low molecular weight human serum proteome. Mol. Cell. Proteomics 2, 1096–1103.

    Article  PubMed  CAS  Google Scholar 

  10. Rothemund, D. L., Locke, V. L., Liew, A., Thomas, T. M., Wasinger, V., and Rylatt, D. B. (2003) Depletion of the highly abundant protein albumin from human plasma using the Gradiflow. Proteomics 3, 279–287.

    Article  PubMed  CAS  Google Scholar 

  11. Steel, L. F., Trotter, M. G., Nakajima, P. B., Mattu, T. S., Gonye, G., and Block, T. (2003) Efficient and specific removal of albumin from human serum samples. Mol. Cell. Proteomics 2, 262–270.

    PubMed  CAS  Google Scholar 

  12. Pieper, R., Su, Q., Gatlin, C. L., Huang, S. T., Anderson, N. L., and Steiner, S. (2003) Multi-component immunoaffinity subtraction chromatography: an innovative step towards a comprehensive survey of the human plasma proteome. Proteomics 3, 422–432.

    Article  PubMed  CAS  Google Scholar 

  13. Ausubel, F. M., Brent, R., Kingston, R. E. (2005) Current Protocols in Molecular Biology. John Wiley & Sons, 10.I.4. Supplement 35.

    Google Scholar 

  14. Patton, W. F. (2000) A thousand points of light: the application of fluorescence detection technologies to two-dimensional gel electrophoresis and proteomics. Electrophoresis 21, 1123–1144.

    Article  PubMed  CAS  Google Scholar 

  15. Görg, A., Weiss, W., and Dunn, M. J. (2004) Current two dimensional electrophoresis technology for proteomics. Proteomics 4, 3665–3685.

    Article  PubMed  Google Scholar 

  16. Görg, A., Postel, W., Günter, S., et al. (1987) Elimination of point streaking on silver stained two dimensional gels by addition of iodoacetamide to equilibration buffer. Electrophoresis 8, 122–124.

    Article  Google Scholar 

  17. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.

    Article  PubMed  CAS  Google Scholar 

  18. Heukeshoven, R. and Dernick, R. (1985) Simplified method for silver staining of proteins in polyacrylamide gels and the mechanism of silver staining. Electrophoresis 6, 103–112.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this protocol

Cite this protocol

Dardé, V.M., Barderas, M.G., Vivanco, F. (2007). Depletion of High-Abundance Proteins in Plasma by Immunoaffinity Substraction for Two-Dimensional Difference Gel Electrophoresis Analysis. In: Vivanco, F. (eds) Cardiovascular Proteomics. Methods in Molecular Biology™, vol 357. Humana Press. https://doi.org/10.1385/1-59745-214-9:351

Download citation

  • DOI: https://doi.org/10.1385/1-59745-214-9:351

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-535-4

  • Online ISBN: 978-1-59745-214-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics