Skip to main content

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 361))

Abstract

The Wnt/β-catenin signaling pathway is tightly regulated and has important functions in development, tissue homeostasis, and regeneration. Deregulation of Wnt/β-catenin signaling is frequently found in various human cancers. Eighty percent of colorectal cancers alone reveal activation of this pathway by either inactivation of the tumor-suppressor gene adenomatous polyposis coli or mutation of the proto-oncogene β-catenin. Activation of Wnt/β-catenin signaling has been found to be important for both initiation and progression of cancers of different tissues. Therefore, targeted inhibition of Wnt/β-catenin signaling is a rational and promising new approach for the therapy of cancers of various origins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ross, J. S., Schenkein, D. P., Pietrusko, R., et al. (2004) Targeted therapies for cancer 2004. Am. J. Clin. Pathol. 122, 598–609.

    CAS  PubMed  Google Scholar 

  2. Jordan, V. C. (2003) Tamoxifen: a most unlikely pioneering medicine. Nat. Rev. Drug Discov. 2, 205–213.

    CAS  PubMed  Google Scholar 

  3. McKeage, K. and Perry, C. M. (2002) Trastuzumab: a review of its use in the treatment of metastatic breast cancer overexpressing HER2. Drugs 62, 209–243.

    CAS  PubMed  Google Scholar 

  4. Reynolds, N. A. and Wagstaff, A. J. (2004) Cetuximab: in the treatment of metastatic colorectal cancer. Drugs 64, 109–121.

    CAS  PubMed  Google Scholar 

  5. McCarthy, M. (2003) Antiangiogenesis drug promising for metastatic colorectal cancer. Lancet 361, 1959.

    PubMed  Google Scholar 

  6. Sparano, J. A., Gray, R., Giantonio, B., O’Dwyer, P., and Comis, R. L. (2004) Evaluating antiangiogenesis agents in the clinic: the Eastern Cooperative Oncology Group Portfolio of Clinical Trials. Clin. Cancer Res. 10, 1206–1211.

    CAS  PubMed  Google Scholar 

  7. Goldman, J. M. and Melo, J. V. (2003) Chronic myeloid leukemia—advances in biology and new approaches to treatment. N. Engl. J. Med. 349, 1451–1464.

    CAS  PubMed  Google Scholar 

  8. von Mehren, M. (2003) Gastrointestinal stromal tumors: a paradigm for molecularly targeted therapy. Cancer Invest. 21, 553–563.

    Google Scholar 

  9. Druker, B. J. (2003) Imatinib mesylate in the treatment of chronic myeloid leukaemia. Expert Opin. Pharmacother. 4, 963–971.

    CAS  PubMed  Google Scholar 

  10. Verweij, J., van Oosterom, A., Blay, J. Y., et al. (2003) Imatinib mesylate (STI-571 Glivec, Gleevec) is an active agent for gastrointestinal stromal tumours, but does not yield responses in other soft-tissue sarcomas that are unselected for a molecular target. Results from an EORTC Soft Tissue and Bone Sarcoma Group phase II study. Eur. J. Cancer 39, 2006–2011.

    CAS  PubMed  Google Scholar 

  11. Dean, N. M. and Bennett, C. F. (2003) Antisense oligonucleotide-based therapeutics for cancer. Oncogene 22, 9087–9096.

    CAS  PubMed  Google Scholar 

  12. Wang, H., Prasad, G., Buolamwini, J. K., and Zhang, R. (2001) Antisense anticancer oligonucleotide therapeutics. Curr. Cancer Drug Targets 1, 177–196.

    PubMed  Google Scholar 

  13. Jansen, B., Wacheck, V., Heere-Ress, E., et al. (2000) Chemosensitisation of malignant melanoma by BCL2 antisense therapy. Lancet 356, 1728–1733.

    CAS  PubMed  Google Scholar 

  14. Chi, K. N., Gleave, M. E., Klasa, R., et al. (2001) A phase I dose-finding study of combined treatment with an antisense Bcl-2 oligonucleotide (Genasense) and mitoxantrone in patients with metastatic hormone-refractory prostate cancer. Clin. Cancer Res. 7, 3920–3927.

    CAS  PubMed  Google Scholar 

  15. Iversen, P. L., Arora, V., Acker, A. J., Mason, D. H., and Devi, G. R. (2003) Efficacy of antisense morpholino oligomer targeted to c-myc in prostate cancer xenograft murine model and a Phase I safety study in humans. Clin. Cancer Res. 9, 2510–2519.

    CAS  PubMed  Google Scholar 

  16. Advani, R., Peethambaram, P., Lum, B. L., et al. (2004) A Phase II trial of aprinocarsen, an antisense oligonucleotide inhibitor of protein kinase C alpha, administered as a 21-day infusion to patients with advanced ovarian carcinoma. Cancer 100, 321–326.

    CAS  PubMed  Google Scholar 

  17. Niemann, S., Zhao, C., Pascu, F., et al. (2004) Homozygous WNT3 mutation causes tetra-amelia in a large consanguineous family. Am. J. Hum. Genet. 74, 558–563.

    CAS  PubMed  Google Scholar 

  18. Jordan, B. K., Shen, J. H., Olaso, R., Ingraham, H. A., and Vilain, E. (2003) Wnt4 overexpression disrupts normal testicular vasculature and inhibits testosterone synthesis by repressing steroidogenic factor 1/beta-catenin synergy. Proc. Natl. Acad. Sci. USA 100, 10,866–10,871.

    CAS  PubMed  Google Scholar 

  19. Rodova, M., Islam, M. R., Maser, R. L., and Calvet, J. P. (2002) The polycystic kidney disease-1 promoter is a target of the beta-catenin/T-cell factor pathway. J. Biol. Chem. 277, 29,577–29,583.

    CAS  PubMed  Google Scholar 

  20. Robitaille, J., MacDonald, M. L., Kaykas, A., et al. (2002) Mutant frizzled-4 disrupts retinal angiogenesis in familial exudative vitreoretinopathy. Nat. Genet. 32, 326–330.

    CAS  PubMed  Google Scholar 

  21. Toomes, C., Bottomley, H. M., Jackson, R. M., et al. (2004) Mutations in LRP5 or FZD4 underlie the common familial exudative vitreoretinopathy locus on chromosome 11q. Am. J. Hum. Genet. 74, 721–730.

    CAS  PubMed  Google Scholar 

  22. Lammi, L., Arte, S., Somer, M., et al. (2004) Mutations in AXIN2 cause familial tooth agenesis and predispose to colorectal cancer. Am. J. Hum. Genet. 74, 1043–1050.

    CAS  PubMed  Google Scholar 

  23. Kim, J. S., Crooks, H., Foxworth, A., and Waldman, T. (2002) Proof-of-principle: oncogenic beta-catenin is a valid molecular target for the development of pharmacological inhibitors. Mol. Cancer Ther. 1, 1355–1359.

    CAS  PubMed  Google Scholar 

  24. Gunther, E. J., Moody, S. E., Belka, G. K., et al. (2003) Impact of p53 loss on reversal and recurrence of conditional Wnt-induced tumorigenesis. Genes Dev. 17, 488–501.

    CAS  PubMed  Google Scholar 

  25. Derksen, P. W., Tjin, E., Meijer, H. P., et al. (2004) Illegitimate WNT signaling promotes proliferation of multiple myeloma cells. Proc. Natl. Acad. Sci. USA 101, 6122–6127.

    CAS  PubMed  Google Scholar 

  26. Rijsewijk, F., Schuermann, M., Wagenaar, E., Parren, P., Weigel, D., and Nusse, R. (1987) The Drosophila homolog of the mouse mammary oncogene int-1 is identical to the segment polarity gene wingless. Cell 50, 649–657.

    CAS  PubMed  Google Scholar 

  27. Cadigan, K. M. and Nusse, R. (1997) Wnt signaling: a common theme in animal development. Genes Dev. 11, 3286–3305.

    CAS  PubMed  Google Scholar 

  28. Papkoff, J., Rubinfeld, B., Schryver, B., and Polakis, P. (1996) Wnt-1 regulates free pools of catenins and stabilizes APC-catenin complexes. Mol. Cell. Biol. 16, 2128–2134.

    CAS  PubMed  Google Scholar 

  29. Polakis, P. (2000) Wnt signaling and cancer. Genes Dev. 14, 1837–1851.

    CAS  PubMed  Google Scholar 

  30. Veeman, M. T., Axelrod, J. D., and Moon, R. T. (2003) A second canon. Functions and mechanisms of beta-catenin-independent Wnt signaling. Dev. Cell. 5, 367–377.

    CAS  PubMed  Google Scholar 

  31. Mann, B., Gelos, M., Siedow, A., et al. (1999) Target genes of beta-catenin-T cell-factor/lymphoid-enhancer-factor signaling in human colorectal carcinomas. Proc. Natl. Acad. Sci. USA 96, 1603–1608.

    CAS  PubMed  Google Scholar 

  32. Xia, Y. and Karin, M. (2004) The control of cell motility and epithelial morphogenesis by Jun kinases. Trends Cell Biol. 14, 94–101.

    CAS  PubMed  Google Scholar 

  33. Wada, T. and Penninger, J. M. (2004) Mitogen-activated protein kinases in apoptosis regulation. Oncogene 23, 2838–2849.

    CAS  PubMed  Google Scholar 

  34. Kennedy, N. J. and Davis, R. J. (2003) Role of JNK in tumor development. Cell Cycle 2, 199–201.

    CAS  PubMed  Google Scholar 

  35. Miller, J. R. (2002) The Wnts. Genome Biol 3, REVIEWS3001.

    Google Scholar 

  36. Huang, H. C. and Klein, P. S. (2004) The Frizzled family: receptors for multiple signal transduction pathways. Genome Biol. 5, 234.

    PubMed  Google Scholar 

  37. Tamai, K., Semenov, M., Kato, Y., et al. (2000) LDL-receptor-related proteins in Wnt signal transduction. Nature 407, 530–535.

    CAS  PubMed  Google Scholar 

  38. Jones, S. E. and Jomary, C. (2002) Secreted Frizzled-related proteins: searching for relationships and patterns. Bioessays 24, 811–820.

    CAS  PubMed  Google Scholar 

  39. Hsieh, J. C., Kodjabachian, L., Rebbert, M. L., et al. (1999) A new secreted protein that binds to Wnt proteins and inhibits their activities. Nature 398, 431–436.

    CAS  PubMed  Google Scholar 

  40. Brott, B. K. and Sokol, S. Y. (2002) Regulation of Wnt/LRP signaling by distinct domains of Dickkopf proteins. Mol. Cell. Biol. 22, 6100–6110.

    CAS  PubMed  Google Scholar 

  41. Fedi, P., Bafico, A., Nieto Soria, A., et al. (1999) Isolation and biochemical characterization of the human Dkk-1 homologue, a novel inhibitor of mammalian Wnt signaling. J. Biol. Chem. 274, 19,465–19,472.

    CAS  PubMed  Google Scholar 

  42. Mao, B., Wu, W., Li, Y., et al. (2001) LDL-receptor-related protein 6 is a receptor for Dickkopf proteins. Nature 411, 321–325.

    CAS  PubMed  Google Scholar 

  43. Mao, B., Wu, W., Davidson, G., et al. (2002) Kremen proteins are Dickkopf receptors that regulate Wnt/beta-catenin signalling. Nature 417, 664–667.

    CAS  PubMed  Google Scholar 

  44. Barth, A. I., Nathke, I. S., and Nelson, W. J. (1997) Cadherins, catenins and APC protein: interplay between cytoskeletal complexes and signaling pathways. Curr. Opin. Cell. Biol. 9, 683–690.

    CAS  PubMed  Google Scholar 

  45. Graham, N. A. and Asthagiri, A. R. (2004) Epidermal growth factor-mediated T-cell factor/lymphoid enhancer factor transcriptional activity is essential but not sufficient for cell cycle progression in nontransformed mammary epithelial cells. J. Biol. Chem. 279, 23,517–23,524.

    CAS  PubMed  Google Scholar 

  46. Danilkovitch-Miagkova, A., Miagkov, A., Skeel, A., Nakaigawa, N., Zbar, B., and Leonard, E. J. (2001) Oncogenic mutants of RON and MET receptor tyrosine kinases cause activation of the beta-catenin pathway. Mol. Cell. Biol. 21, 5857–5868.

    CAS  PubMed  Google Scholar 

  47. Bonvini, P., An, W. G., Rosolen, A., et al. (2001) Geldanamycin abrogates ErbB2 association with proteasome-resistant beta-catenin in melanoma cells, increases beta-catenin-E-cadherin association, and decreases beta-catenin-sensitive transcription. Cancer Res. 61, 1671–1677.

    CAS  PubMed  Google Scholar 

  48. Hinoi, T., Yamamoto, H., Kishida, M., Takada, S., Kishida, S., and Kikuchi, A. (2000) Complex formation of adenomatous polyposis coli gene product and axin facilitates glycogen synthase kinase-3 beta-dependent phosphorylation of beta-catenin and down-regulates beta-catenin. J. Biol. Chem. 275, 34,399–34,406.

    CAS  PubMed  Google Scholar 

  49. Ikeda, S., Kishida, M., Matsuura, Y., Usui, H., and Kikuchi, A. (2000) GSK-3beta-dependent phosphorylation of adenomatous polyposis coli gene product can be modulated by beta-catenin and protein phosphatase 2A complexed with Axin. Oncogene 19, 537–545.

    CAS  PubMed  Google Scholar 

  50. Yamamoto, H., Kishida, S., Kishida, M., Ikeda, S., Takada, S., and Kikuchi, A. (1999) Phosphorylation of axin, a Wnt signal negative regulator, by glycogen synthase kinase-3beta regulates its stability. J. Biol. Chem. 274, 10,681–10,684.

    CAS  PubMed  Google Scholar 

  51. Kishida, S., Yamamoto, H., Ikeda, S., et al. (1998) Axin, a negative regulator of the wnt signaling pathway, directly interacts with adenomatous polyposis coli and regulates the stabilization of beta-catenin. J. Biol. Chem. 273, 10,823–10,826.

    CAS  PubMed  Google Scholar 

  52. Ikeda, S., Kishida, S., Yamamoto, H., Murai, H., Koyama, S., and Kikuchi, A. (1998) Axin, a negative regulator of the Wnt signaling pathway, forms a complex with GSK-3beta and beta-catenin and promotes GSK-3beta-dependent phosphorylation of beta-catenin. Embo. J. 17, 1371–1384.

    CAS  PubMed  Google Scholar 

  53. Liu, C., Li, Y., Semenov, M., Han, C., et al. (2002) Control of beta-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell 108, 837–847.

    CAS  PubMed  Google Scholar 

  54. Amit, S., Hatzubai, A., Birman, Y., et al. (2002) Axin-mediated CKI phosphorylation of beta-catenin at Ser 45: a molecular switch for the Wnt pathway. Genes Dev. 16, 1066–1076.

    CAS  PubMed  Google Scholar 

  55. Latres, E., Chiaur, D. S., and Pagano, M. (1999) The human F box protein beta-Trcp associates with the Cul1/Skp1 complex and regulates the stability of beta-catenin. Oncogene 18, 849–854.

    CAS  PubMed  Google Scholar 

  56. Hart, M., Concordet, J. P., Lassot, I., et al. (1999) The F-box protein beta-TrCP associates with phosphorylated beta-catenin and regulates its activity in the cell. Curr. Biol. 9, 207–210.

    CAS  PubMed  Google Scholar 

  57. Aberle, H., Bauer, A., Stappert, J., Kispert, A., and Kemler, R. (1997) beta-catenin is a target for the ubiquitin-proteasome pathway. Embo J. 16, 3797–3804.

    CAS  PubMed  Google Scholar 

  58. Kishida, M., Hino, S., Michiue, T., et al. (2001) Synergistic activation of the Wnt signaling pathway by Dvl and casein kinase Iepsilon. J. Biol. Chem. 276, 33,147–33,155.

    CAS  PubMed  Google Scholar 

  59. Lee, E., Salic, A., and Kirschner, M. W. (2001) Physiological regulation of [beta]-catenin stability by Tcf3 and CK1epsilon. J. Cell. Biol. 154, 983–993.

    CAS  PubMed  Google Scholar 

  60. Mao, J., Wang, J., Liu, B., et al. (2001) Low-density lipoprotein receptor-related protein-5 binds to Axin and regulates the canonical Wnt signaling pathway. Mol. Cell. 7, 801–809.

    CAS  PubMed  Google Scholar 

  61. Matsuzawa, S. I. and Reed, J. C. (2001) Siah-1, SIP, and Ebi collaborate in a novel pathway for beta-catenin degradation linked to p53 responses. Mol. Cell. 7, 915–926.

    CAS  PubMed  Google Scholar 

  62. Liu, J., Stevens, J., Rote, C. A., et al. (2001) Siah-1 mediates a novel beta-catenin degradation pathway linking p53 to the adenomatous polyposis coli protein. Mol. Cell. 7, 927–936.

    CAS  PubMed  Google Scholar 

  63. Sadot, E., Geiger, B., Oren, M., and Ben-Ze’ev, A. (2001) Down-regulation of beta-catenin by activated p53. Mol. Cell. Biol. 21, 6768–6781.

    CAS  PubMed  Google Scholar 

  64. Behrens, J., von Kries, J. P., Kuhl, M., et al. (1996) Functional interaction of beta-catenin with the transcription factor LEF-1. Nature 382, 638–642.

    CAS  PubMed  Google Scholar 

  65. Molenaar, M., van de Wetering, M., Oosterwegel, M., et al. (1996) XTcf-3 transcription factor mediates beta-catenin-induced axis formation in Xenopus embryos. Cell 86, 391–399.

    CAS  PubMed  Google Scholar 

  66. Cavallo, R. A., Cox, R. T., Moline, M. M., et al. (1998) Drosophila Tcf and Groucho interact to repress Wingless signalling activity. Nature 395, 604–608.

    CAS  PubMed  Google Scholar 

  67. Roose, J., Molenaar, M., Peterson, J., et al. (1998) The Xenopus Wnt effector XTcf-3 interacts with Groucho-related transcriptional repressors. Nature 395, 608–612.

    CAS  PubMed  Google Scholar 

  68. Brantjes, H., Barker, N., van Es, J., and Clevers, H. (2002) TCF: Lady Justice casting the final verdict on the outcome of Wnt signalling. Biol. Chem. 383, 255–261.

    CAS  PubMed  Google Scholar 

  69. Hecht, A., Vleminckx, K., Stemmler, M. P., van Roy, F., and Kemler, R. (2000) The p300/CBP acetyltransferases function as transcriptional coactivators of beta-catenin in vertebrates. Embo. J. 19, 1839–1850.

    CAS  PubMed  Google Scholar 

  70. Sun, Y., Kolligs, F. T., Hottiger, M. O., Mosavin, R., Fearon, E. R., and Nabel, G. J. (2000) Regulation of beta-catenin transformation by the p300 transcriptional coactivator. Proc. Natl. Acad. Sci. USA 97, 12,613–12,618.

    CAS  PubMed  Google Scholar 

  71. Takemaru, K. I. and Moon, R. T. (2000) The transcriptional coactivator CBP interacts with beta-catenin to activate gene expression. J. Cell. Biol. 149, 249–254.

    CAS  PubMed  Google Scholar 

  72. Barker, N., Hurlstone, A., Musisi, H., Miles, A., Bienz, M., and Clevers, H. (2001) The chromatin remodelling factor Brg-1 interacts with beta-catenin to promote target gene activation. Embo. J. 20, 4935–4943.

    CAS  PubMed  Google Scholar 

  73. Bauer, A., Huber, O., and Kemler, R. (1998) Pontin52, an interaction partner of beta-catenin, binds to the TATA box binding protein. Proc. Natl. Acad. Sci. USA 95, 14,787–14,792.

    CAS  PubMed  Google Scholar 

  74. He, T. C., Sparks, A. B., Rago, C., et al. (1998) Identification of c-MYC as a target of the APC pathway. Science 281, 1509–1512.

    CAS  PubMed  Google Scholar 

  75. Shtutman, M., Zhurinsky, J., Simcha, I., et al. (1999) The cyclin D1 gene is a target of the beta-catenin/LEF-1 pathway. Proc. Natl. Acad. Sci. USA 96, 5522–5527.

    CAS  PubMed  Google Scholar 

  76. Tetsu, O. and McCormick, F. (1999) Beta-catenin regulates expression of cyclin D1in colon carcinoma cells. Nature 398, 422–426.

    CAS  PubMed  Google Scholar 

  77. Zhang, X., Gaspard, J. P., and Chung, D. C. (2001) Regulation of vascular endothelial growth factor by the Wnt and K-ras pathways in colonic neoplasia. Cancer Res. 61, 6050–6054.

    CAS  PubMed  Google Scholar 

  78. Brabletz, T., Jung, A., Dag, S., Hlubek, F., and Kirchner, T. (1999) beta-catenin regulates the expression of the matrix metalloproteinase-7 in human colorectal cancer. Am. J. Pathol. 155, 1033–1038.

    CAS  PubMed  Google Scholar 

  79. Takahashi, M., Tsunoda, T., Seiki, M., Nakamura, Y., and Furukawa, Y. (2002) Identification of membrane-type matrix metalloproteinase-1 as a target of the beta-catenin/Tcf4 complex in human colorectal cancers. Oncogene 21, 5861–5867.

    CAS  PubMed  Google Scholar 

  80. Marchenko, N. D., Marchenko, G. N., Weinreb, R. N., et al. (2004) Beta-catenin regulates the gene of MMP-26, a novel metalloproteinase expressed both in carcinomas and normal epithelial cells. Int. J. Biochem. Cell. Biol. 36, 942–956.

    CAS  PubMed  Google Scholar 

  81. van der Heyden, M. A., Rook, M. B., Hermans, M. M., et al. (1998) Identification of connexin43 as a functional target for Wnt signalling. J. Cell. Sci. 111, 1741–1749.

    PubMed  Google Scholar 

  82. He, T. C., Chan, T. A., Vogelstein, B., and Kinzler, K. W. (1999) PPARdelta is an APC-regulated target of nonsteroidal anti-inflammatory drugs. Cell 99, 335–345.

    CAS  PubMed  Google Scholar 

  83. Kolligs, F. T., Nieman, M. T., Winer, I., et al. (2002) ITF-2, a downstream target of the Wnt/TCF pathway, is activated in human cancers with beta-catenin defects and promotes neoplastic transformation. Cancer Cell. 1, 145–155.

    CAS  PubMed  Google Scholar 

  84. Blache, P., van de Wetering, M., Duluc, I., et al. (2004) SOX9 is an intestine crypt transcription factor, is regulated by the Wnt pathway, and represses the CDX2 and MUC2 genes. J. Cell. Biol. 166, 37–47.

    CAS  PubMed  Google Scholar 

  85. Saitoh, T., Mine, T., and Katoh, M. (2002) Frequent up-regulation of WNT5A mRNA in primary gastric cancer. Int. J. Mol. Med. 9, 515–519.

    CAS  PubMed  Google Scholar 

  86. Rhee, C. S., Sen, M., Lu, D., et al. (2002) Wnt and frizzled receptors as potential targets for immunotherapy in head and neck squamous cell carcinomas. Oncogene 21, 6598–6605.

    CAS  PubMed  Google Scholar 

  87. Holcombe, R. F., Marsh, J. L., Waterman, M. L., Lin, F., Milovanovic, T., and Truong, T. (2002) Expression of Wnt ligands and Frizzled receptors in colonic mucosa and in colon carcinoma. Mol. Pathol. 55, 220–226.

    CAS  PubMed  Google Scholar 

  88. Lu, D., Zhao, Y., Tawatao, R., et al. (2004) Activation of the Wnt signaling pathway in chronic lymphocytic leukemia. Proc. Natl. Acad. Sci. USA 101, 3118–3123.

    CAS  PubMed  Google Scholar 

  89. Tanaka, S., Akiyoshi, T., Mori, M., Wands, J. R., and Sugimachi, K. (1998) A novel frizzled gene identified in human esophageal carcinoma mediates APC/beta-catenin signals. Proc. Natl. Acad. Sci. USA 95, 10,164–10,169.

    CAS  PubMed  Google Scholar 

  90. Kirikoshi, H., Sekihara, H., and Katoh, M. (2001) Up-regulation of Frizzled-7 (FZD7) in human gastric cancer. Int. J. Oncol. 19, 111–115.

    CAS  PubMed  Google Scholar 

  91. Hoang, B. H., Kubo, T., Healey, J. H., et al. (2004) Expression of LDL receptorrelated protein 5 (LRP5) as a novel marker for disease progression in high-grade osteosarcoma. Int. J. Cancer 109, 106–111.

    CAS  PubMed  Google Scholar 

  92. Nagahata, T., Shimada, T., Harada, A., et al. (2003) Amplification, up-regulation and over-expression of DVL-1, the human counterpart of the Drosophila disheveled gene, in primary breast cancers. Cancer Sci. 94, 515–518.

    CAS  PubMed  Google Scholar 

  93. Okino, K., Nagai, H., Hatta, M., et al. (2003) Up-regulation and overproduction of DVL-1, the human counterpart of the Drosophila dishevelled gene, in cervical squamous cell carcinoma. Oncol. Rep. 10, 1219–1223.

    CAS  PubMed  Google Scholar 

  94. Uematsu, K., Kanazawa, S., You, L., et al. (2003) Wnt pathway activation in mesothelioma: evidence of Dishevelled overexpression and transcriptional activity of beta-catenin. Cancer Res. 63, 4547–4551.

    CAS  PubMed  Google Scholar 

  95. Saitoh, T. and Katoh, M. (2001) FRAT1 and FRAT2, clustered in human chromosome 10q24.1 region, are up-regulated in gastric cancer. Int. J. Oncol. 19, 311–315.

    CAS  PubMed  Google Scholar 

  96. Ugolini, F., Charafe-Jauffret, E., Bardou, V. J., et al. (2001) WNT pathway and mammary carcinogenesis: loss of expression of candidate tumor suppressor gene SFRP1 in most invasive carcinomas except of the medullary type. Oncogene 20, 5810–5817.

    CAS  PubMed  Google Scholar 

  97. Stoehr, R., Wissmann, C., Suzuki, H., et al. (2004) Deletions of chromosome 8p and loss of sFRP1 expression are progression markers of papillary bladder cancer. Lab. Invest. 84, 465–478.

    CAS  PubMed  Google Scholar 

  98. Suzuki, H., Watkins, D. N., Jair, K. W., et al. (2004) Epigenetic inactivation of SFRP genes allows constitutive WNT signaling in colorectal cancer. Nat. Genet. 36, 417–422.

    CAS  PubMed  Google Scholar 

  99. Lee, A. Y., He, B., You, L., et al. (2004) Expression of the secreted frizzled-related protein gene family is downregulated in human mesothelioma. Oncogene 23, 6672–6676.

    CAS  PubMed  Google Scholar 

  100. Wissmann, C., Wild, P. J., Kaiser, S., et al. (2003) WIF1, a component of the Wnt pathway, is down-regulated in prostate, breast, lung, and bladder cancer. J. Pathol. 201, 204–212.

    CAS  PubMed  Google Scholar 

  101. Mazieres, J., He, B., You, L., et al. (2004) Wnt inhibitory factor-1 is silenced by promoter hypermethylation in human lung cancer. Cancer Res. 64, 4717–4720.

    CAS  PubMed  Google Scholar 

  102. He, B., Lee, A. Y., Dadfarmay, S., et al. (2005) Secreted frizzled-related protein 4 is silenced by hypermethylation and induces apoptosis in beta-catenin-deficient human mesothelioma cells. Cancer Res. 65, 743–748.

    CAS  PubMed  Google Scholar 

  103. Satoh, S., Daigo, Y., Furukawa, Y., et al. (2000) AXIN1 mutations in hepatocellular carcinomas, and growth suppression in cancer cells by virus-mediated transfer of AXIN1. Nat. Genet. 24, 245–250.

    CAS  PubMed  Google Scholar 

  104. Taniguchi, K., Roberts, L. R., Aderca, I. N., et al. (2002) Mutational spectrum of beta-catenin, AXIN1, and AXIN2 in hepatocellular carcinomas and hepatoblastomas. Oncogene 21, 4863–4871.

    CAS  PubMed  Google Scholar 

  105. Liu, W., Dong, X., Mai, M., et al. (2000) Mutations in AXIN2 cause colorectal cancer with defective mismatch repair by activating beta-catenin/TCF signalling. Nat. Genet. 26, 146–147.

    CAS  PubMed  Google Scholar 

  106. Dahmen, R. P., Koch, A., Denkhaus, D., et al. (2001) Deletions of AXIN1, a component of the WNT/wingless pathway, in sporadic medulloblastomas. Cancer Res. 61, 7039–7043.

    CAS  PubMed  Google Scholar 

  107. Yokota, N., Nishizawa, S., Ohta, S., et al. (2002) Role of Wnt pathway in medulloblastoma oncogenesis. Int. J. Cancer 101, 198–201.

    CAS  PubMed  Google Scholar 

  108. Groden, J., Thliveris, A., Samowitz, W., et al. (1991) Identification and characterization of the familial adenomatous polyposis coli gene. Cell 66, 589–600.

    CAS  PubMed  Google Scholar 

  109. Nishisho, I., Nakamura, Y., Miyoshi, Y., et al. (1991) Mutations of chromosome 5q21 genes in FAP and colorectal cancer patients. Science 253, 665–669.

    CAS  PubMed  Google Scholar 

  110. Miyoshi, Y., Nagase, H., Ando, H., et al. (1992) Somatic mutations of the APC gene in colorectal tumors: mutation cluster region in the APC gene. Hum. Mol. Genet. 1, 229–233.

    CAS  PubMed  Google Scholar 

  111. Lamlum, H., Ilyas, M., Rowan, A., et al. (1999) The type of somatic mutation at APC in familial adenomatous polyposis is determined by the site of the germline mutation: a new facet to Knudson’s ‘two-hit’ hypothesis. Nat. Med. 5, 1071–1075.

    CAS  PubMed  Google Scholar 

  112. Rowan, A. J., Lamlum, H., Ilyas, M., et al. (2000) APC mutations in sporadic colorectal tumors: A mutational “hotspot” and interdependence of the “two hits.” Proc. Natl. Acad. Sci. USA 97, 3352–3357.

    CAS  PubMed  Google Scholar 

  113. Su, L. K., Vogelstein, B., and Kinzler, K. W. (1993) Association of the APC tumor suppressor protein with catenins. Science 262, 1734–1737.

    CAS  PubMed  Google Scholar 

  114. Rubinfeld, B., Albert, I., Porfiri, E., Munemitsu, S., and Polakis, P. (1997) Loss of beta-catenin regulation by the APC tumor suppressor protein correlates with loss of structure due to common somatic mutations of the gene. Cancer Res. 57, 4624–4630.

    CAS  PubMed  Google Scholar 

  115. Hart, M. J., de los Santos, R., Albert, I. N., Rubinfeld, B., and Polakis, P. (1998) Downregulation of beta-catenin by human Axin and its association with the APC tumor suppressor, beta-catenin and GSK3 beta. Curr. Biol. 8, 573–581.

    CAS  PubMed  Google Scholar 

  116. Rubinfeld, B., Albert, I., Porfiri, E., Fiol, C., Munemitsu, S., and Polakis, P. (1996) Binding of GSK3beta to the APC-beta-catenin complex and regulation of complex assembly. Science 272, 1023–1026.

    CAS  PubMed  Google Scholar 

  117. Rubinfeld, B., Souza, B., Albert, I., et al. (1993) Association of the APC gene product with beta-catenin. Science 262, 1731–1734.

    CAS  PubMed  Google Scholar 

  118. Munemitsu, S., Albert, I., Souza, B., Rubinfeld, B., and Polakis, P. (1995) Regulation of intracellular beta-catenin levels by the adenomatous polyposis coli (APC) tumor-suppressor protein. Proc. Natl. Acad. Sci. USA 92, 3046–3050.

    CAS  PubMed  Google Scholar 

  119. Behrens, J., Jerchow, B. A., Wurtele, M., et al. (1998) Functional interaction of an axin homolog, conductin, with beta-catenin, APC, and GSK3beta. Science 280, 596–599.

    CAS  PubMed  Google Scholar 

  120. Peifer, M., Pai, L. M., and Casey, M. (1994) Phosphorylation of the Drosophila adherens junction protein Armadillo: roles for wingless signal and zeste-white 3 kinase. Dev. Biol. 166, 543–556.

    CAS  PubMed  Google Scholar 

  121. Kawahara, K., Morishita, T., Nakamura, T., Hamada, F., Toyoshima, K., and Akiyama, T. (2000) Down-regulation of beta-catenin by the colorectal tumor suppressor APC requires association with Axin and beta-catenin. J. Biol. Chem. 275, 8369–8374.

    CAS  PubMed  Google Scholar 

  122. Kinzler, K. W. and Vogelstein, B. (1996) Lessons from hereditary colorectal cancer. Cell 87, 159–170.

    CAS  PubMed  Google Scholar 

  123. Reifenberger, J., Knobbe, C. B., Wolter, M., et al. (2002) Molecular genetic analysis of malignant melanomas for aberrations of the WNT signaling pathway genes CTNNB1, APC, ICAT and BTRC. Int. J. Cancer 100, 549–556.

    CAS  PubMed  Google Scholar 

  124. Koch, A., Waha, A., Tonn, J. C., et al. (2001) Somatic mutations of WNT/wingless signaling pathway components in primitive neuroectodermal tumors. Int. J. Cancer 93, 445–449.

    CAS  PubMed  Google Scholar 

  125. Huang, H., Mahler-Araujo, B. M., Sankila, A., et al. (2000) APC mutations in sporadic medulloblastomas. Am. J. Pathol. 156, 433–437.

    CAS  PubMed  Google Scholar 

  126. Tejpar, S., Nollet, F., Li, C., et al. (1999) Predominance of beta-catenin mutations and beta-catenin dysregulation in sporadic aggressive fibromatosis (desmoid tumor). Oncogene 18, 6615–6620.

    CAS  PubMed  Google Scholar 

  127. Alman, B. A., Li, C., Pajerski, M. E., Diaz-Cano, S., and Wolfe, H. J. (1997) Increased beta-catenin protein and somatic APC mutations in sporadic aggressive fibromatoses (desmoid tumors). Am. J. Pathol. 151, 329–334.

    CAS  PubMed  Google Scholar 

  128. Sparks, A. B., Morin, P. J., Vogelstein, B., and Kinzler, K. W. (1998) Mutational analysis of the APC/beta-catenin/Tcf pathway in colorectal cancer. Cancer Res. 58, 1130–1134.

    CAS  PubMed  Google Scholar 

  129. Morin, P. J., Sparks, A. B., Korinek, V., et al. (1997) Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science 275, 1787–1790.

    CAS  PubMed  Google Scholar 

  130. Kitaeva, M. N., Grogan, L., Williams, J. P., et al. (1997) Mutations in beta-catenin are uncommon in colorectal cancer occurring in occasional replication error-positive tumors. Cancer Res. 57, 4478–4481.

    CAS  PubMed  Google Scholar 

  131. Iwao, K., Nakamori, S., Kameyama, M., et al. (1998) Activation of the beta-catenin gene by interstitial deletions involving exon 3 in primary colorectal carcinomas without adenomatous polyposis coli mutations. Cancer Res. 58, 1021–1026.

    CAS  PubMed  Google Scholar 

  132. Mirabelli-Primdahl, L., Gryfe, R., Kim, H., et al. (1999) Beta-catenin mutations are specific for colorectal carcinomas with microsatellite instability but occur in endometrial carcinomas irrespective of mutator pathway. Cancer Res. 59, 3346–3351.

    CAS  PubMed  Google Scholar 

  133. Wong, C. M., Fan, S. T., and Ng, I. O. (2001) beta-Catenin mutation and overexpression in hepatocellular carcinoma: clinicopathologic and prognostic significance. Cancer 92, 136–145.

    CAS  PubMed  Google Scholar 

  134. Koch, A., Denkhaus, D., Albrecht, S., Leuschner, I., von Schweinitz, D., and Pietsch, T. (1999) Childhood hepatoblastomas frequently carry a mutated degradation targeting box of the beta-catenin gene. Cancer Res. 59, 269–273.

    CAS  PubMed  Google Scholar 

  135. Park, W. S., Oh, R. R., Park, J. Y., et al. (1999) Frequent somatic mutations of the beta-catenin gene in intestinal-type gastric cancer. Cancer Res. 59, 4257–4260.

    CAS  PubMed  Google Scholar 

  136. Clements, W. M., Wang, J., Sarnaik, A., et al. (2002) beta-Catenin mutation is a frequent cause of Wnt pathway activation in gastric cancer. Cancer Res. 62, 3503–3506.

    CAS  PubMed  Google Scholar 

  137. Fujimori, M., Ikeda, S., Shimizu, Y., Okajima, M., and Asahara, T. (2001) Accumulation of beta-catenin protein and mutations in exon 3 of beta-catenin gene in gastrointestinal carcinoid tumor. Cancer Res. 61, 6656–6659.

    CAS  PubMed  Google Scholar 

  138. Abraham, S. C., Nobukawa, B., Giardiello, F. M., Hamilton, S. R., and Wu, T. T. (2001) Sporadic fundic gland polyps: common gastric polyps arising through activating mutations in the beta-catenin gene. Am. J. Pathol. 158, 1005–1010.

    CAS  PubMed  Google Scholar 

  139. Abraham, S. C., Wu, T. T., Hruban, R. H., et al. (2002) Genetic and immunohistochemical analysis of pancreatic acinar cell carcinoma: frequent allelic loss on chromosome 11p and alterations in the APC/beta-catenin pathway. Am. J. Pathol. 160, 953–962.

    CAS  PubMed  Google Scholar 

  140. Abraham, S. C., Klimstra, D. S., Wilentz, R. E., et al. (2002) Solid-pseudopapillary tumors of the pancreas are genetically distinct from pancreatic ductal adenocarcinomas and almost always harbor beta-catenin mutations. Am. J. Pathol. 160, 1361–1369.

    CAS  PubMed  Google Scholar 

  141. Gamallo, C., Palacios, J., Moreno, G., Calvo de Mora, J., Suarez, A., and Armas, A. (1999) beta-catenin expression pattern in stage I and II ovarian carcinomas: relationship with beta-catenin gene mutations, clinicopathological features, and clinical outcome. Am. J. Pathol. 155, 527–536.

    Google Scholar 

  142. Wu, R., Zhai, Y., Fearon, E. R., and Cho, K. R. (2001) Diverse mechanisms of beta-catenin deregulation in ovarian endometrioid adenocarcinomas. Cancer Res. 61, 8247–8255.

    CAS  PubMed  Google Scholar 

  143. Fukuchi, T., Sakamoto, M., Tsuda, H., Maruyama, K., Nozawa, S., and Hirohashi, S. (1998) Beta-catenin mutation in carcinoma of the uterine endometrium. Cancer Res. 58, 3526–3528.

    CAS  PubMed  Google Scholar 

  144. Kobayashi, K., Sagae, S., Nishioka, Y., Tokino, T., and Kudo, R. (1999) Mutations of the beta-catenin gene in endometrial carcinomas. Jpn. J. Cancer Res. 90, 55–59.

    CAS  PubMed  Google Scholar 

  145. Garcia-Rostan, G., Camp, R. L., Herrero, A., Carcangiu, M. L., Rimm, D. L., and Tallini, G. (2001) Beta-catenin dysregulation in thyroid neoplasms: down-regulation, aberrant nuclear expression, and CTNNB1 exon 3 mutations are markers for aggressive tumor phenotypes and poor prognosis. Am. J. Pathol. 158, 987–996.

    CAS  PubMed  Google Scholar 

  146. Voeller, H. J., Truica, C. I., and Gelmann, E. P. (1998) Beta-catenin mutations in human prostate cancer. Cancer Res. 58, 2520–2523.

    CAS  PubMed  Google Scholar 

  147. Chesire, D. R., Ewing, C. M., Sauvageot, J., Bova, G. S., and Isaacs, W. B. (2000) Detection and analysis of beta-catenin mutations in prostate cancer. Prostate 45, 323–334.

    CAS  PubMed  Google Scholar 

  148. Zurawel, R. H., Chiappa, S. A., Allen, C., and Raffel, C. (1998) Sporadic medulloblastomas contain oncogenic beta-catenin mutations. Cancer Res. 58, 896–899.

    CAS  PubMed  Google Scholar 

  149. Koesters, R., Niggli, F., von Knebel Doeberitz, M., and Stallmach, T. (2003) Nuclear accumulation of beta-catenin protein in Wilms’ tumours. J. Pathol. 199, 68–76.

    Google Scholar 

  150. Giles, R. H., van Es, J. H., and Clevers, H. (2003) Caught up in a Wnt storm: Wnt signaling in cancer. Biochim. Biophys. Acta 1653, 1–24.

    CAS  PubMed  Google Scholar 

  151. Kim, J. S., Crooks, H., Foxworth, A., and Waldman, T. (2002) Proof-of-principle: oncogenic beta-catenin is a valid molecular target for the development of pharmacological inhibitors. Mol. Cancer Ther. 1, 1355–1359.

    CAS  PubMed  Google Scholar 

  152. Tsuji, T., Nozaki, I., Miyazaki, M., et al. (2001) Antiproliferative activity of REIC/Dkk-3 and its significant down-regulation in non-small-cell lung carcinomas. Biochem. Biophys. Res. Commun. 289, 257–263.

    CAS  PubMed  Google Scholar 

  153. Hoang, B. H., Kubo, T., Healey, J. H., et al. (2004) Dickkopf 3 inhibits invasion and motility of Saos-2 osteosarcoma cells by modulating the Wnt-beta-catenin pathway. Cancer Res. 64, 2734–2739.

    CAS  PubMed  Google Scholar 

  154. Shou, J., Ali-Osman, F., Multani, A. S., Pathak, S., Fedi, P., and Srivenugopal, K. S. (2002) Human Dkk-1, a gene encoding a Wnt antagonist, responds to DNA damage and its overexpression sensitizes brain tumor cells to apoptosis following alkylation damage of DNA. Oncogene 21, 878–889.

    CAS  PubMed  Google Scholar 

  155. He, B., You, L., Uematsu, K., et al. (2004) A monoclonal antibody against Wnt-1 induces apoptosis in human cancer cells. Neoplasia 6, 7–14.

    CAS  PubMed  Google Scholar 

  156. He, B., Reguart, N., You, L., et al. (2005) Blockade of Wnt-1 signaling induces apoptosis in human colorectal cancer cells containing downstream mutations. Oncogene 24, 3054–3058.

    CAS  PubMed  Google Scholar 

  157. Suzuki, H., Gabrielson, E., Chen, W., et al. (2002) A genomic screen for genes upregulated by demethylation and histone deacetylase inhibition in human colorectal cancer. Nat. Genet. 31, 141–149.

    CAS  PubMed  Google Scholar 

  158. Caldwell, G. M., Jones, C., Gensberg, K., et al. (2004) The Wnt antagonist sFRP1 in colorectal tumorigenesis. Cancer Res. 64, 883–888.

    CAS  PubMed  Google Scholar 

  159. Roh, H., Green, D. W., Boswell, C. B., Pippin, J. A., and Drebin, J. A. (2001) Suppression of beta-catenin inhibits the neoplastic growth of APC-mutant colon cancer cells. Cancer Res. 61, 6563–6568.

    CAS  PubMed  Google Scholar 

  160. Green, D. W., Roh, H., Pippin, J. A., and Drebin, J. A. (2001) Beta-catenin antisense treatment decreases beta-catenin expression and tumor growth rate in colon carcinoma xenografts. J. Surg. Res. 101, 16–20.

    CAS  PubMed  Google Scholar 

  161. Choi, Y. W., Heath, E. I., Heitmiller, R., Forastiere, A. A., and Wu, T. T. (2000) Mutations in beta-catenin and APC genes are uncommon in esophageal and esophagogastric junction adenocarcinomas. Mod. Pathol. 13, 1055–1059.

    CAS  PubMed  Google Scholar 

  162. Wijnhoven, B. P., Dinjens, W. N., and Pignatelli, M. (2000) E-cadherin-catenin cell-cell adhesion complex and human cancer. Br. J. Surg. 87, 992–1005.

    CAS  PubMed  Google Scholar 

  163. Chung, E. J., Hwang, S. G., Nguyen, P., et al. (2002) Regulation of leukemic cell adhesion, proliferation, and survival by beta-catenin. Blood 100, 982–990.

    CAS  PubMed  Google Scholar 

  164. van de Wetering, M., Oving, I., Muncan, V., et al. (2003) Specific inhibition of gene expression using a stably integrated, inducible small-interfering-RNA vector. EMBO Rep. 4, 609–615.

    PubMed  Google Scholar 

  165. Verma, U. N., Surabhi, R. M., Schmaltieg, A., Becerra, C., and Gaynor, R. B. (2003) Small interfering RNAs directed against beta-catenin inhibit the in vitro and in vivo growth of colon cancer cells. Clin. Cancer Res. 9, 1291–1300.

    CAS  PubMed  Google Scholar 

  166. Soutschek, J., Akinc, A., Bramlage, B., et al. (2004) Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 432, 173–178.

    CAS  PubMed  Google Scholar 

  167. Rossi, J. J. (2004) Medicine: a cholesterol connection in RNAi. Nature 432, 155–156.

    CAS  PubMed  Google Scholar 

  168. Morin, P. J., Vogelstein, B., and Kinzler, K. W. (1996) Apoptosis and APC in colorectal tumorigenesis. Proc. Natl. Acad. Sci. USA 93, 7950–7954.

    CAS  PubMed  Google Scholar 

  169. Shih, I. M., Yu, J., He, T. C., Vogelstein, B., and Kinzler, K. W. (2000) The beta-catenin binding domain of adenomatous polyposis coli is sufficient for tumor suppression. Cancer Res. 60, 1671–1676.

    CAS  PubMed  Google Scholar 

  170. Cong, F., Schweizer, L., Chamorro, M., and Varmus, H. (2003) Requirement for a nuclear function of beta-catenin in Wnt signaling. Mol. Cell. Biol. 23, 8462–8470.

    CAS  PubMed  Google Scholar 

  171. Su, Y., Ishikawa, S., Kojima, M., and Liu, B. (2003) Eradication of pathogenic beta-catenin by Skp1/Cullin/F box ubiquitylation machinery. Proc. Natl. Acad. Sci. USA 100, 12,729–12,734.

    CAS  PubMed  Google Scholar 

  172. Liu, J., Stevens, J., Matsunami, N., and White, R. L. (2004) Targeted degradation of beta-catenin by chimeric F-box fusion proteins. Biochem. Biophys. Res. Commun. 313, 1023–1029.

    CAS  PubMed  Google Scholar 

  173. Papkoff, J. and Aikawa, M. (1998) WNT-1 and HGF regulate GSK3 beta activity and beta-catenin signaling in mammary epithelial cells. Biochem. Biophys. Res. Commun. 247, 851–858.

    CAS  PubMed  Google Scholar 

  174. Playford, M. P., Bicknell, D., Bodmer, W. F., and Macaulay, V. M. (2000) Insulinlike growth factor 1regulates the location, stability, and transcriptional activity of beta-catenin. Proc. Natl. Acad. Sci. USA 97, 12,103–12,108.

    CAS  PubMed  Google Scholar 

  175. Piedra, J., Martinez, D., Castano, J., Miravet, S., Dunach, M., and de Herreros, A. G. (2001) Regulation of beta-catenin structure and activity by tyrosine phosphorylation. J. Biol. Chem. 276, 20,436–20,443.

    CAS  PubMed  Google Scholar 

  176. Vlahovic, G. and Crawford, J. (2003) Activation of tyrosine kinases in cancer. Oncologist 8, 531–538.

    CAS  PubMed  Google Scholar 

  177. Lu, Z., Ghosh, S., Wang, Z., and Hunter, T. (2003) Downregulation of caveolin-1 function by EGF leads to the loss of E-cadherin, increased transcriptional activity of beta-catenin, and enhanced tumor cell invasion. Cancer Cell. 4, 499–515.

    CAS  PubMed  Google Scholar 

  178. Lu, Z. and Hunter, T. (2004) Wnt-independent beta-catenin transactivation in tumor development. Cell Cycle 3, 571–573.

    CAS  PubMed  Google Scholar 

  179. Zhou, L., An, N., Haydon, R. C., et al. (2003) Tyrosine kinase inhibitor STI-571/Gleevec down-regulates the beta-catenin signaling activity. Cancer Lett. 193, 161–170.

    CAS  PubMed  Google Scholar 

  180. Chen, R. H. and McCormick, F. (2001) Selective targeting to the hyperactive beta-catenin/T-cell factor pathway in colon cancer cells. Cancer Res. 61, 4445–4449.

    CAS  PubMed  Google Scholar 

  181. Kwong, K. Y., Zou, Y., Day, C. P., and Hung, M. C. (2002) The suppression of colon cancer cell growth in nude mice by targeting beta-catenin/TCF pathway. Oncogene 21, 8340–8346.

    CAS  PubMed  Google Scholar 

  182. Ring, C. J. (2002) Cytolytic viruses as potential anti-cancer agents. J. Gen. Virol. 83, 491–502.

    PubMed  Google Scholar 

  183. Brunori, M., Malerba, M., Kashiwazaki, H., and Iggo, R. (2001) Replicating adenoviruses that target tumors with constitutive activation of the wnt signaling pathway. J. Virol. 75, 2857–2865.

    CAS  PubMed  Google Scholar 

  184. Fuerer, C. and Iggo, R. (2002) Adenoviruses with Tcf binding sites in multiple early promoters show enhanced selectivity for tumour cells with constitutive activation of the wnt signalling pathway. Gene Ther. 9, 270–281.

    CAS  PubMed  Google Scholar 

  185. Toth, K., Djeha, H., Ying, B., et al. (2004) An oncolytic adenovirus vector combining enhanced cell-to-cell spreading, mediated by the ADP cytolytic protein, with selective replication in cancer cells with deregulated wnt signaling. Cancer Res. 64, 3638–3644.

    CAS  PubMed  Google Scholar 

  186. Malerba, M., Daeffler, L., Rommelaere, J., and Iggo, R. D. (2003) Replicating parvoviruses that target colon cancer cells. J. Virol. 77, 6683–6691.

    CAS  PubMed  Google Scholar 

  187. Lepourcelet, M., Chen, Y. N., France, D. S., et al. (2004) Small-molecule antagonists of the oncogenic Tcf/beta-catenin protein complex. Cancer Cell 5, 91–102.

    CAS  PubMed  Google Scholar 

  188. Emami, K. H., Nguyen, C., Ma, H., et al. (2004) A small molecule inhibitor of beta-catenin/CREB-binding protein transcription [corrected]. Proc. Natl. Acad. Sci. USA 101, 12,682–12,687.

    CAS  PubMed  Google Scholar 

  189. Dang, C. V. (1999) c-Myc target genes involved in cell growth, apoptosis, and metabolism. Mol. Cell. Biol. 19, 1–11.

    CAS  PubMed  Google Scholar 

  190. Whittaker, S. R., Walton, M. I., Garrett, M. D., and Workman, P. (2004) the Cyclin-dependent kinase inhibitor CYC202 (R-roscovitine) inhibits retinoblastoma protein phosphorylation, causes loss of Cyclin D1, and activates the mitogenactivated protein kinase pathway. Cancer Res. 64, 262–272.

    CAS  PubMed  Google Scholar 

  191. Hidalgo, M. and Rowinsky, E. K. (2000) The rapamycin-sensitive signal transduction pathway as a target for cancer therapy. Oncogene 19, 6680–6686.

    CAS  PubMed  Google Scholar 

  192. Suto, R., Tominaga, K., Mizuguchi, H., et al. (2004) Dominant-negative mutant of c-Jun gene transfer: a novel therapeutic strategy for colorectal cancer. Gene Ther. 11, 187–193.

    CAS  PubMed  Google Scholar 

  193. Easwaran, V., Lee, S. H., Inge, L., et al. (2003) beta-Catenin regulates vascular endothelial growth factor expression in colon cancer. Cancer Res. 63, 3145–3153.

    CAS  PubMed  Google Scholar 

  194. Gupta, R. A. and DuBois, R. N. (2000) Translational studies on Cox-2 inhibitors in the prevention and treatment of colon cancer. Ann. NY Acad. Sci. 910, 196–204.

    CAS  PubMed  Google Scholar 

  195. Araki, Y., Okamura, S., Hussain, S. P., et al. (2003) Regulation of cyclooxygenase-2 expression by the Wnt and ras pathways. Cancer Res. 63, 728–734.

    CAS  PubMed  Google Scholar 

  196. Dimberg, J., Hugander, A., Sirsjo, A., and Soderkvist, P. (2001) Enhanced expression of cyclooxygenase-2 and nuclear beta-catenin are related to mutations in the APC gene in human colorectal cancer. Anticancer Res. 21, 911–915.

    CAS  PubMed  Google Scholar 

  197. Thun, M. J., Henley, S. J., and Patrono, C. (2002) Nonsteroidal anti-inflammatory drugs as anticancer agents: mechanistic, pharmacologic, and clinical issues. J. Natl. Cancer Inst. 94, 252–266.

    CAS  PubMed  Google Scholar 

  198. Koehne, C. H. and Dubois, R. N. (2004) COX-2 inhibition and colorectal cancer. Semin. Oncol. 31, 12–21.

    CAS  PubMed  Google Scholar 

  199. Oshima, M. and Taketo, M. M. (2002) COX selectivity and animal models for colon cancer. Curr. Pharm. Des. 8, 1021–1034.

    CAS  PubMed  Google Scholar 

  200. Ricchi, P., Palma, A. D., Matola, T. D., et al. (2003) Aspirin protects Caco-2 cells from apoptosis after serum deprivation through the activation of a phosphatidylinositol 3-kinase/AKT/p21Cip/WAF1pathway. Mol. Pharmacol. 64, 407–414.

    CAS  PubMed  Google Scholar 

  201. Lew, J. I., Guo, Y., Kim, R. K., Vargish, L., Michelassi, F., and Arenas, R. B. (2002) Reduction of intestinal neoplasia with adenomatous polyposis coli gene replacement and COX-2 inhibition is additive. J. Gastrointest. Surg. 6, 563–568.

    PubMed  Google Scholar 

  202. Kielman, M. F., Rindapaa, M., Gaspar, C., et al. (2002) Apc modulates embryonic stem-cell differentiation by controlling the dosage of beta-catenin signaling. Nat. Genet. 32, 594–605.

    CAS  PubMed  Google Scholar 

  203. Reya, T., Duncan, A. W., Ailles, L., et al. (2003) A role for Wnt signalling in selfrenewal of haematopoietic stem cells. Nature 423, 409–414.

    CAS  PubMed  Google Scholar 

  204. Sato, N., Meijer, L., Skaltsounis, L., Greengard, P., and Brivanlou, A. H. (2004) Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat. Med. 10, 55–63.

    CAS  PubMed  Google Scholar 

  205. Korinek, V., Barker, N., Moerer, P., et al. (1998) Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4. Nat. Genet. 19, 379–383.

    CAS  PubMed  Google Scholar 

  206. van de Wetering, M., Sancho, E., Verweij, C., et al. (2002) The beta-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell 111, 241–250.

    PubMed  Google Scholar 

  207. Chan, T. A., Wang, Z., Dang, L. H., Vogelstein, B., and Kinzler, K. W. (2002) Targeted inactivation of CTNNB1 reveals unexpected effects of beta-catenin mutation. Proc. Natl. Acad. Sci. USA 99, 8265–8270.

    CAS  PubMed  Google Scholar 

  208. Kim, S. J., Im, D. S., Kim, S. H., et al. (2002) Beta-catenin regulates expression of cyclooxygenase-2 in articular chondrocytes. Biochem. Biophys. Res. Commun. 296, 221–226.

    CAS  PubMed  Google Scholar 

  209. Willert, K., Brown, J. D., Danenberg, E., et al. (2003) Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature 423, 448–452.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this protocol

Cite this protocol

Herbst, A., Kolligs, F.T. (2007). Wnt Signaling as a Therapeutic Target for Cancer. In: Sioud, M. (eds) Target Discovery and Validation Reviews and Protocols. Methods in Molecular Biology™, vol 361. Humana Press. https://doi.org/10.1385/1-59745-208-4:63

Download citation

  • DOI: https://doi.org/10.1385/1-59745-208-4:63

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-890-4

  • Online ISBN: 978-1-59745-208-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics