Skip to main content

Analysis of DNA Repair Using Transfection-Based Host Cell Reactivation

  • Protocol
Molecular Toxicology Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 291))

Abstract

Host cell reactivation (HCR) is a transfection-based assay in which intact cells repair damage localized to exogenous DNA. This chapter provides instructions for the application of this technique using UV irradiation as a source of damage to a luciferase reporter plasmid. Through measurement of the activity of a reporter enzyme, the amount of damaged plasmid that a cell can “reactivate” or repair and express can be quantitated. Different DNA repair pathways can be analyzed by this technique by damaging the reporter plasmid in different ways. Because it involves repair of a transcriptionally active gene, when applied to UV damage the HCR assay measures the capacity of the host cells to perform transcription-coupled repair (TCR), a subset of the overall nucleotide excision repair pathway that specifically targets transcribed gene sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rupert, C. and Harm, W. (1966) Reactivation after photobiological damage. Adv. Radiat. Biol. 2, 1–81.

    Google Scholar 

  2. Protic-Sabljic, M. and Kraemer, K. H. (1985) One pyrimidine dimer inactivates expression of a transfected gene in xeroderma pigmentosum cells. Proc. Natl. Acad. Sci. USA 82, 6622–6626.

    Article  CAS  PubMed  Google Scholar 

  3. Athas, W. F., Hedayati, M. A., Matanoski, G. M., Farmer, E. R., and Grossman, L. (1991) Development and field-test validation of an assay for DNA repair in circulating human lymphocytes. Cancer Res. 51, 5786–5793.

    CAS  PubMed  Google Scholar 

  4. Bohr, V. A., Smith, C. A., Okumoto, D. S., and Hanawalt, P. C. (1985) DNA repair in an active gene: removal of pyrimidine dimers from the DHFR gene of CHO cells is much more efficient than in the genome overall. Cell 40, 359–369.

    Article  CAS  PubMed  Google Scholar 

  5. Matijasevic, Z., Precopio, M. L., Snyder, J. E., and Ludlum, D. B. (2001) Repair of sulfur mustard-induced DNA damage in mammalian cells measured by a host cell reactivation assay. Carcinogenesis 22, 661–664.

    Article  CAS  PubMed  Google Scholar 

  6. Berwick, M. and Veneis, P. (2000) Markers of DNA repair and susceptibility to cancer in humans: an epidemiologic review. J. Natl. Cancer Inst. 92, 847–897.

    Article  Google Scholar 

  7. Invitrogen Life Technologies Lipofectamine 2000 CD Reagent, pp. 1–2; available at http://www.invitrogen.com.

  8. Promega Luciferase Assay System Instructions, Technical Bulletin No. 281, pp. 1–13; available at http://www.promega.com.

  9. BCA Protein Assay Reagent Kit 23227 Instructions, pp. 1–8; available at http://www.piercenet.com.

  10. Miller, J. H. (1972) Experiments in Molecular Genetics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp. 352–355.

    Google Scholar 

  11. Rainbow, A. (1975) Host-cell reactivation of irradiated human adenovirus. Basic Life Sci. 5B, 753–754.

    CAS  PubMed  Google Scholar 

  12. Slebos, R. J. and Taylor, J. A. (2001) A novel host cell reactivation assay to assess homologous recombination capacity in human cancer cell lines. Biochem. Biophys. Res. Commun. 281, 212–219.

    Article  CAS  PubMed  Google Scholar 

  13. Hansson, J. and Wood, R. D. (1989) Repair synthesis by human cell extracts in DNA damaged by cis-and trans-diamminedichloroplatinum(II). Nucleic Acids Res. 17,8073–8091.

    Article  CAS  PubMed  Google Scholar 

  14. Yen, L., Woo, A., Christopoulopoulos, G., et al. (1995) Enhanced host cell reactivation capacity and expression of DNA repair genes in human breast cancer cells resistant to bifunctional alkylating agents. Mutat. Res. 337, 179–189.

    CAS  PubMed  Google Scholar 

  15. Dean, S. W., Sykes, H. R., and Lehmann, A. R. (1988) Inactivation by nitrogen mustard of plasmids introduced into normal and Fanconi’s anaemia cells. Mutat. Res. 194,57–63.

    CAS  PubMed  Google Scholar 

  16. Sun, Y. and Moses, R. E. (1991) Reactivation of psoralen-reacted plasmid in Fanconi anemia, xeroderma pigmentosum, and normal human fibroblast cells. Somat. Cell Mol. Genet. 17, 229–238.

    Article  CAS  PubMed  Google Scholar 

  17. Stevnsner, T., Frandsen, H., and Autrup, H. (1995) Repair of DNA lesions induced by ultraviolet irradiation and aromatic amines in normal and repair-deficient human lymphoblastoid cell lines. Carcinogenesis 16, 2855–2858.

    Article  CAS  PubMed  Google Scholar 

  18. Tanooka, H. and Tada, M. (1975) Reparable lethal DNA damage produced by enzyme-activated 4-hydroxyaminoquinoline 1-oxide. Chem. Biol. Interact. 10, 11–18.

    Article  CAS  PubMed  Google Scholar 

  19. Cheng, L., Eicher, S. A., Guo, Z., Hong, W. K., Spitz, M. R., and Wei, Q. (1998) Reduced DNA repair capacity in head and neck cancer patients. Cancer Epidemiol. Biomarkers Prev. 7, 465–468.

    CAS  PubMed  Google Scholar 

  20. Matsijasevic, Z., Precopio, M. L., Snyder, J. E., and Ludlum, D. B. (2001) Repair of sulfur mustard-induced DNA damage in mammalian cells measured by a host cell reactivation assay. Carcinogenesis 22, 661–664.

    Article  Google Scholar 

  21. Kuraoka, I., Bender, C., Romieu, A., Cadet, J., Wood, R. D., and Lindahl, T. (2000) Removal of oxygen free-radical-induced 5′,8-purine cyclodeoxynucleosides from DNA by the nucleotide excision repair pathway in human cells. Proc. Natl. Acad. Sci. USA. 97, 3832–3837.

    Article  CAS  PubMed  Google Scholar 

  22. Iakoucheva, L. M., Walker, R. K., van Houten, B., and Ackerman, E. J. (2002) Equilibrium and stop-slow kinetic studies of fluorescently labeled DNA substrates with DNA repair proteins XPA and replication protein A. Biochemistry 41, 131–143.

    Article  CAS  PubMed  Google Scholar 

  23. Day, R. S. III and Ziolkowski, C. H. (1979) Human brain tumour cell strains with deficient host-cell reactivation of N-methyl-N−-nitro-N-nitrosoguanidine-damaged adenovirus 5. Nature 279, 797–799.

    Article  CAS  PubMed  Google Scholar 

  24. Maynard, K., Parsons, P. G., Cerny, T., and Margison, G. P. (1989) Relationships among cell survival, O6-alkylguanine-DNA alkyltransferase activity, and reactivation of methylated adenovirus 5 and herpes simplex virus type 1 in human melanoma cell lines. Cancer Res. 49, 4813–4817.

    CAS  PubMed  Google Scholar 

  25. L’Herault, P. and Chung, Y. S. (1982) Host cell reactivation of ozone-treated T3 bacteriophage by different strains of Escherichia coli. Experentia 38, 1491–1492.

    Article  CAS  Google Scholar 

  26. Diem, C. and Runger, T. M. (1997) Processing of three different types of DNA damage in cell lines of a cutaneous squamous cell carcinoma progression model. Carcinogenesis 18, 657–662.

    Article  CAS  PubMed  Google Scholar 

  27. Protic-Sabljic, M. and Kraemer, K. H. (1986) Host cell reactivation by human cells of DNA expression vectors damaged by ultraviolet radiation or by acid/heat treatment. Carcinogenesis 7, 1765–1770.

    Article  CAS  PubMed  Google Scholar 

  28. Matsumoto, Y. (1999) Base excision repair assay using Xenopus laevis oocyte extracts, in Methods in Molecular Biology, vol. 113, DNA Repair Protocols: Eukaryotic Systems (Henderson, D. S., ed.), Humana, Totowa, NJ, pp. 289–300.

    Chapter  Google Scholar 

  29. Runger, T. M., Emmert, S., Schadendorf, D., Diem, C., Epe, B., and Hellfritsch, D. (2000) Alterations of DNA repair in melanoma cell lines resistant to cisplatin, fotemustine, or etoposide. J. Invest. Dermatol. 114, 34–39.

    Article  CAS  PubMed  Google Scholar 

  30. Perlow, R. A., Schinecker, T. M., Kim, S. J., Geacintov, N. E., and Scicchitano, D. A. (2003) Construction and purification of site-specifically modified DNA templates for transcription assays. Nucleic Acids. Res. 31, e40.

    Article  PubMed  Google Scholar 

  31. Latimer, J. J., Hultner, M. L., Cleaver, J. E., and Pedersen, R. A. (1996) Elevated DNA excision repair capacity in the extraembryonic mesoderm of the mid-gestation mouse embryo. Exp. Cell Res. 228, 19–28.

    Article  CAS  PubMed  Google Scholar 

  32. Cheng, L., Guan, Y., Li, L., et al. (1999) Expression in normal human tissues of five nucleotide excision repair genes measured simultaneously by multiplex reverse transcription-polymerase chain reaction. Cancer Epidemiol. Biomarkers Prev. 8, 801–807.

    CAS  PubMed  Google Scholar 

  33. Latimer, J. J., Nazir, T., Flowers, L. C, et al. (2003) Unique tissue-specific level of DNA nucleotide excision repair in primary human mammary epithelial cultures. Exp. Cell Res. 291, 111–121.

    Article  CAS  PubMed  Google Scholar 

  34. Ford, J. M., Baron, E. L., and Hanawalt, P. C. (1998) Human fibroblasts expressing the human papillomavirus E6 gene are deficient in global genomic nucleotide excision repair and sensitive to ultraviolet irradiation. Cancer Res. 58, 599–603.

    CAS  PubMed  Google Scholar 

  35. Bowman, K. K., Sicard, D. M., Ford, J. M., and Hanawalt, P. C. (2000) Reduced global genomic repair of ultraviolet light-induced cyclobutane pyrimidine dimers in simian virus 40-transformed human cells. Mol. Carcinogen. 29, 17–24.

    Article  CAS  Google Scholar 

  36. Fututa, T., Ueda, T., Aune, G., Sarasin, A., Kraemer, K. H., and Pommier, Y. (2002) Transcription-coupled nucleotide excision repair as a determinant of cisplatin sensitivity of human cells. Cancer Res. 65, 4899–4902.

    Google Scholar 

  37. Steier, H. and Cleaver, J. E. (1969) Exposure chamber for quantitative ultraviolet photo-biology. Lab Prac. 18, 1295.

    CAS  Google Scholar 

  38. Promega Transfection Guide, pp. 1–56; available at http://www.promega.com.

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc.

About this protocol

Cite this protocol

Johnson, J.M., Latimer, J.J. (2005). Analysis of DNA Repair Using Transfection-Based Host Cell Reactivation. In: Keohavong, P., Grant, S.G. (eds) Molecular Toxicology Protocols. Methods in Molecular Biology™, vol 291. Humana Press. https://doi.org/10.1385/1-59259-840-4:321

Download citation

  • DOI: https://doi.org/10.1385/1-59259-840-4:321

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-084-7

  • Online ISBN: 978-1-59259-840-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics