Skip to main content

Prologue: The Ion Channel

  • Protocol
Patch Clamp Techniques

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

A historical overview describes how classic electrophysiological techniques, such as membrane potential measurement, seal formation, and the voltage clamp, have evolved into modern patch-clamp techniques. We show that old ideas from seminal papers on ion channels (i.e., gating, inactivation, ion permeation, ion selectivity) have remained as valid concepts for understanding the molecular properties of ion channels. With the currently available three-dimensional crystal structures of channel proteins, in combination with patch-clamping, novel experimental approaches that focus on the dynamic behavior of channel molecules are undergoing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hille B (2001) Ion Channels of Excitable Membranes, 3rd edn. Sinauer Associated, Inc., MA

    Google Scholar 

  2. Kukita F (2005) Progress in a study of ion channels for 50 years. Biophysics 45:10–15 (in Japanese)

    Article  CAS  Google Scholar 

  3. Hodgkin AL, Huxley AF (1939) Action potentials recorded from inside a nerve fibre. Nature 144:710–711

    Article  Google Scholar 

  4. Hodgkin AL, Katz B (1949) The effect of sodium ions on the electrical activity of giant axon of the squid. J Physiol 108(1):37–77

    PubMed  CAS  Google Scholar 

  5. Sakmann B, Neher E (1995) Single-channel recording, 2nd edn. Plenum, New York

    Book  Google Scholar 

  6. Sigworth FJ (2003) Molecular switches for “animal electricity”. A century of nature: twenty-one discoveries that changed science and the world. University of Chicago Press, Chicago

    Google Scholar 

  7. Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch 391(2):85–100

    Article  PubMed  CAS  Google Scholar 

  8. Usui S (1997) Mathematical models in brain and nerve. New biophysics, vol 8. Kyoritsu Shuppan, Tokyo (in Japanese)

    Google Scholar 

  9. Hodgkin AL, Huxley AF, Katz B (1952) Measurement of current-voltage relations in the membrane of the giant axon of Loligo. J Physiol 116(4):424–448

    PubMed  CAS  Google Scholar 

  10. Kukita F (2000) Effect of water on gating of voltage-gated ion channels. Biophysics 40:185–190 (in Japanese)

    Article  CAS  Google Scholar 

  11. Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117(4):500–544

    PubMed  CAS  Google Scholar 

  12. Hodgkin AL, Huxley AF (1952) The components of membrane conductance in the giant axon of Loligo. J Physiol 116(4):473–496

    PubMed  CAS  Google Scholar 

  13. Hodgkin AL, Huxley AF (1952) Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J Physiol 116(4):449–472

    PubMed  CAS  Google Scholar 

  14. Hodgkin AL, Huxley AF (1952) The dual effect of membrane potential on sodium conductance in the giant axon of Loligo. J Physiol 116(4):497–506

    PubMed  CAS  Google Scholar 

  15. Koch C (2004) Biophysics of computation: information processing in single neurons. Computational neuroscience New Ed. Oxford University Press, Oxford

    Google Scholar 

  16. Armstrong CM, Bezanilla F (1974) Charge movement associated with the opening and closing of the activation gates of the Na channels. J Gen Physiol 63(5):533–552

    Article  PubMed  CAS  Google Scholar 

  17. Conti F, Stuhmer W (1989) Quantal charge redistributions accompanying the structural transitions of sodium channels. Eur Biophys J 17(2):53–59

    Article  PubMed  CAS  Google Scholar 

  18. Stefani E, Toro L, Perozo E, Bezanilla F (1994) Gating of Shaker K+ channels: I. Ionic and gating currents. Biophys J 66(4):996–1010

    Article  PubMed  CAS  Google Scholar 

  19. Kukita F (2000) Solvent effects on squid sodium channels are attributable to movements of a flexible protein structure in gating currents and to hydration in a pore. J Physiol 522(Pt 3):357–373

    Article  PubMed  CAS  Google Scholar 

  20. Noda M, Shimizu S, Tanabe T, Takai T, Kayano T, Ikeda T, Takahashi H, Nakayama H, Kanaoka Y, Minamino N et al (1984) Primary structure of Electrophorus electricus sodium channel deduced from cDNA sequence. Nature 312(5990):121–127

    Article  PubMed  CAS  Google Scholar 

  21. Papazian DM, Timpe LC, Jan YN, Jan LY (1991) Alteration of voltage-dependence of Shaker potassium channel by mutations in the S4 sequence. Nature 349(6307):305–310

    Article  PubMed  CAS  Google Scholar 

  22. Yang N, George AL Jr, Horn R (1996) Molecular basis of charge movement in voltage-gated sodium channels. Neuron 16(1):113–122

    Article  PubMed  Google Scholar 

  23. Bezanilla F (2002) Voltage sensor movements. J Gen Physiol 120(4):465–473

    Article  PubMed  CAS  Google Scholar 

  24. Shelley C, Magleby KL (2008) Linking exponential components to kinetic states in Markov models for single-channel gating. J Gen Physiol 132(2):295–312

    Article  PubMed  Google Scholar 

  25. Colquhoun D, Hawkes AG (1995) The principles of the stochastic interpretation of ­ion-channel mechanisms. In: Sakmann B, Neher E (eds) Single-channel recording, 2nd edn. Plenum, New York, pp 397–482

    Google Scholar 

  26. Armstrong CM, Bezanilla F, Rojas E (1973) Destruction of sodium conductance inactivation in squid axons perfused with pronase. J Gen Physiol 62(4):375–391

    Article  PubMed  CAS  Google Scholar 

  27. Hoshi T, Zagotta WN, Aldrich RW (1990) Biophysical and molecular mechanisms of Shaker potassium channel inactivation. Science 250(4980):533–538

    Article  PubMed  CAS  Google Scholar 

  28. Lopez-Barneo J, Hoshi T, Heinemann SH, Aldrich RW (1993) Effects of external cations and mutations in the pore region on C-type inactivation of Shaker potassium channels. Recept Channel 1(1):61–71

    CAS  Google Scholar 

  29. Cuello LG, Jogini V, Cortes DM, Perozo E (2010) Structural mechanism of C-type inactivation in K(+) channels. Nature 466(7303):203–208

    Article  PubMed  CAS  Google Scholar 

  30. Schulz SG (1980) Basic principles of membrane transport. Cambridge University Press, Cambridge

    Google Scholar 

  31. Finkelstein A (1987) Water movement through lipid bilayers, pores, and plasma membranes. Theory and reality. Wiley-Interscience, New York

    Google Scholar 

  32. Kuno M, Ando H, Morihata H, Sakai H, Mori H, Sawada M, Oiki S (2009) Temperature dependence of proton permeation through a voltage-gated proton channel. J Gen Physiol 134(3):191–205

    Article  PubMed  CAS  Google Scholar 

  33. Ando H, Kuno M, Shimizu H, Muramatsu I, Oiki S (2005) Coupled K+-water flux through the HERG potassium channel measured by an osmotic pulse method. J Gen Physiol 126(5):529–538

    Article  PubMed  CAS  Google Scholar 

  34. Iwamoto M, Oiki S (2011) Counting ion and water molecules in a streaming file through the open-filter structure of the K channel. J Neuroscience 31(34):12180–12188

    Article  PubMed  CAS  Google Scholar 

  35. MacKinnon R, Cohen SL, Kuo A, Lee A, Chait BT (1998) Structural conservation in prokaryotic and eukaryotic potassium channels. Science 280(5360):106–109

    Article  PubMed  CAS  Google Scholar 

  36. Doyle DA, Morais Cabral J, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, MacKinnon R (1998) The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280(5360):69–77

    Article  PubMed  CAS  Google Scholar 

  37. Heginbotham L, Lu Z, Abramson T, MacKinnon R (1994) Mutations in the K+ channel signature sequence. Biophys J 66(4):1061–1067

    Article  PubMed  CAS  Google Scholar 

  38. Jiang Y, Lee A, Chen J, Cadene M, Chait BT, MacKinnon R (2002) The open pore ­conformation of potassium channels. Nature 417(6888):523–526

    Article  PubMed  CAS  Google Scholar 

  39. Jiang Y, Lee A, Chen J, Ruta V, Cadene M, Chait BT, MacKinnon R (2003) X-ray structure of a voltage-dependent K+ channel. Nature 423(6935):33–41

    Article  PubMed  CAS  Google Scholar 

  40. Kuo A, Gulbis JM, Antcliff JF, Rahman T, Lowe ED, Zimmer J, Cuthbertson J, Ashcroft FM, Ezaki T, Doyle DA (2003) Crystal structure of the potassium channel KirBac1.1 in the closed state. Science 300(5627):1922–1926

    Article  PubMed  CAS  Google Scholar 

  41. Long SB, Campbell EB, MacKinnon R (2005) Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science 309(5736):897–903

    Article  PubMed  CAS  Google Scholar 

  42. Morais-Cabral JH, Zhou Y, MacKinnon R (2001) Energetic optimization of ion conduction rate by the K+ selectivity filter. Nature 414(6859):37–42

    Article  PubMed  CAS  Google Scholar 

  43. Zhou Y, Morais-Cabral JH, Kaufman A, MacKinnon R (2001) Chemistry of ion coordination and hydration revealed by a K+ channel-Fab complex at 2.0 A resolution. Nature 414(6859):43–48

    Article  PubMed  CAS  Google Scholar 

  44. Hodgkin AL, Keynes RD (1955) The potassium permeability of a giant nerve fibre. J Physiol 128(1):61–88

    PubMed  CAS  Google Scholar 

  45. Armstrong CM (1975) Potassium pores of nerve and muscle membranes. Membranes 3:325–358

    PubMed  CAS  Google Scholar 

  46. Eisenman G, Horn R (1983) Ionic selectivity revisited: the role of kinetic and equilibrium processes in ion permeation through channels. J Membr Biol 76(3):197–225

    Article  PubMed  CAS  Google Scholar 

  47. Lockless SW, Zhou M, MacKinnon R (2007) Structural and thermodynamic properties of selective ion binding in a K+ channel. PLoS Biol 5(5):e121

    Article  PubMed  Google Scholar 

  48. Thompson AN, Kim I, Panosian TD, Iverson TM, Allen TW, Nimigean CM (2009) Mechanism of potassium-channel selectivity revealed by Na+ and Li+ binding sites within the KcsA pore. Nat Struct Mol Biol 16(12):1317–1324

    Article  PubMed  CAS  Google Scholar 

  49. Cuello LG, Jogini V, Cortes DM, Pan AC, Gagnon DG, Dalmas O, Cordero-Morales JF, Chakrapani S, Roux B, Perozo E (2010) Structural basis for the coupling between activation and inactivation gates in K+ channels. Nature 466(7303):272–275

    Article  PubMed  CAS  Google Scholar 

  50. Schoppa NE, Sigworth FJ (1998) Activation of Shaker potassium channels. III. An activation gating model for wild-type and V2 mutant channels. J Gen Physiol 111(2):313–342

    Article  PubMed  CAS  Google Scholar 

  51. Blunck R, McGuire H, Hyde HC, Bezanilla F (2008) Fluorescence detection of the movement of single KcsA subunits reveals cooperativity. Proc Natl Acad Sci USA 105(51):20263–20268

    Article  PubMed  CAS  Google Scholar 

  52. Sasaki YC, Suzuki Y, Yagi N, Adachi S, Ishibashi M, Suda H, Toyota K, Yanagihara M (2000) Tracking of individual nanocrystals using diffracted x rays. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 62((3 Pt B)):3843–3847

    Article  PubMed  CAS  Google Scholar 

  53. Oiki S, Shimizu H, Iwamoto M, Konno T (2012) Single molecular gating dynamics for the KcsA potassium channel. Adv Chem Phys 146: 147–193

    Google Scholar 

  54. Shimizu H, Iwamoto M, Konno T, Nihei A, Sasaki YC, Oiki S (2008) Global twisting motion of single molecular KcsA potassium channel upon gating. Cell 132(1):67–78

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fumio Kukita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer

About this protocol

Cite this protocol

Kukita, F., Oiki, S. (2012). Prologue: The Ion Channel. In: Okada, Y. (eds) Patch Clamp Techniques. Springer Protocols Handbooks. Springer, Tokyo. https://doi.org/10.1007/978-4-431-53993-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-53993-3_1

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-53992-6

  • Online ISBN: 978-4-431-53993-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics