Skip to main content

Data Analysis for Single-Molecule Localization Microscopy

  • Protocol
  • First Online:
Super-Resolution Microscopy Techniques in the Neurosciences

Part of the book series: Neuromethods ((NM,volume 86))

  • 2645 Accesses

Abstract

We review single-molecule localization microscopy techniques with a focus on computational techniques and algorithms necessary for their use. The most common approach to single-molecule localization, Gaussian fitting at positions pre-estimated from local maxima, is illustrated in depth and techniques for two- and three-dimensional data analysis are highlighted. After an introduction explaining the principle requirements of single-molecule localization microscopy, we discuss and contrast novel approaches such as maximum likelihood estimation and model-less fitting. Finally, we give an overview over the existing, scientifically available software and show how these techniques can be combined to quickly and easily obtain super-resolution images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313(5793):1642–1645

    Article  CAS  PubMed  Google Scholar 

  2. Hess ST, Girirajan TP, Mason MD (2006) Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J 91(11):4258–4272

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (storm). Nat Methods 3(10):793–795

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Heilemann M, van de Linde S, Schüttpelz M, Kasper R, Seefeldt B, Mukherjee A, Tinnefeld P, Sauer M (2008) Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angew Chem Int Ed 47(33):6172–6176

    Article  CAS  Google Scholar 

  5. van de Linde S, Löschberger A, Klein T, Heidbreder M, Wolter S, Heilemann M, Sauer M (2011) Direct stochastic optical reconstruction microscopy with standard fluorescent probes. Nat Protoc 6(7):991–1009, ISSN1754-2189

    Article  PubMed  Google Scholar 

  6. Fölling J, Bossi M, Bock H, Medda R, Wurm CA, Hein B, Jakobs S, Eggeling C, Hell SW (2008) Fluorescence nanoscopy by ground-state depletion and single molecule return. Nat Methods 5(11):943–945, ISSN 1548-7091

    Article  PubMed  Google Scholar 

  7. Vogelsang J, Cordes T, Forthmann C, Steinhauer C, Tinnefeld P (2009) Controlling the fluorescence of ordinary oxazine dyes for single-molecule switching and superresolution microscopy. Proc Natl Acad Sci U S A 106(20):8107–8112

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Lemmer P, Gunkel M, Weiland Y, Müller P, Baddeley D, Kaufmann R, Urich A, Eipel H, Amberger R, Hausmann M, Cremer C (2009) Using conventional fluorescent markers for far-field fluorescence localization nanoscopy allows resolution in the 10-nm range. J Microsc 235(2):163–171

    Article  CAS  PubMed  Google Scholar 

  9. Dedecker P, Hotta J-I, Flors C, Sliwa M, Uji-i H, Roeffaers MBJ, Ando R, Mizuno H, Miyawaki A, Hofkens J (2007) Subdiffraction imaging through the selective donut mode depletion of thermally stable photoswitchable fluorophores: numerical analysis and application to the fluorescent protein Dronpa. J Am Chem Soc 129(51):16132–16141

    Article  CAS  PubMed  Google Scholar 

  10. Hell SW, Wichmann J (1994) Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett 19(11):780

    Article  CAS  PubMed  Google Scholar 

  11. Gustafsson MGL (2005) Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. Proc Natl Acad Sci U S A 102(37):13081–13086

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Heilemann M, Margeat E, Kasper R, Sauer M, Tinnefeld P (2005) Carbocyanine dyes as efficient reversible single-molecule optical switch. J Am Chem Soc 127(11):3801–3806

    Article  CAS  PubMed  Google Scholar 

  13. Bates M, Blosser TR, Zhuang X (2005) Short-range spectroscopic ruler based on a single-molecule optical switch. Phys Rev Lett 94(10):108101

    Article  PubMed Central  PubMed  Google Scholar 

  14. Shaner NC, Lin MZ, McKeown MR, Steinbach PA, Hazelwood KL, Davidson MW, Tsien RY (2008) Improving the photostability of bright monomeric orange and red fluorescent proteins. Nat Methods 5(6):545–551, ISSN 1548-7091

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Cheezum MK, Walker WF, Guilford WH (2001) Quantitative comparison of algorithms for tracking single fluorescent particles. Biophys J 81(4):2378–2388

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Thompson RE, Larson DR, Webb WW (2002) Precise nanometer localization analysis for individual fluorescent probes. Biophys J 82(5):2775–2783

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Yildiz A, Forkey JN, McKinney SA, Ha T, Goldman YE, Selvin PR (2003) Myosin v walks hand-over-hand: single fluorophore imaging with 1.5-nm localization. Science 300(5628):2061–2065

    Article  CAS  PubMed  Google Scholar 

  18. Heilemann M, van de Linde S, Mukherjee A, Sauer M (2009) Super-resolution imaging with small organic fluorophores. Angew Chem Int Ed 48(37):6903–6908

    Article  CAS  Google Scholar 

  19. van de Linde S, Wolter S, Heilemann M, Sauer M (2010) The effect of photoswitching kinetics and labeling densities on superresolution fluorescence imaging. J Biotechnol 149(4):260–266, ISSN 0168-1656

    Article  PubMed  Google Scholar 

  20. van de Linde S, Krstić I, Prisner T, Doose S, Heilemann M, Sauer M (2011) Photoinduced formation of reversible dye radicals and their impact on superresolution imaging. Photochem Photobiol Sci 10:499–506

    Article  PubMed  Google Scholar 

  21. Endesfelder U, van de Linde S, Wolter S, Sauer M, Heilemann M (2010) Subdiffraction resolution fluorescence microscopy of myosin-actin motility. Chemphyschem 11(4):836–840

    Article  CAS  PubMed  Google Scholar 

  22. Wombacher R, Heidbreder M, van de Linde S, Sheetz MP, Heilemann M, Cornish VW, Sauer M (2010) Livecell super-resolution imaging with trimethoprim conjugates. Nat Methods 7(9):717–719, ISSN 1548-7091

    Article  CAS  PubMed  Google Scholar 

  23. Owen DM, Rentero C, Rossy J, Magenau A, Williamson D, Rodriguez M, Gaus K (2010) Palm imaging and cluster analysis of protein heterogeneity at the cell surface. J Biophotonics 3(7):446–454, ISSN 1864-0648

    Article  CAS  PubMed  Google Scholar 

  24. Henriques R, Lelek M, Fornasiero EF, Valtorta F, Zimmer C, Mhlanga MM (2010) QuickPALM: 3D real-time photoactivation nanoscopy image processing in ImageJ. Nat Methods 7(5):339–340, ISSN 1548-7091

    Article  CAS  PubMed  Google Scholar 

  25. Williamson DJ, Owen DM, Rossy J, Magenau A, Wehrmann M, Gooding JJ, Gaus K (2011) Pre-existing clusters of the adaptor lat do not participate in early T cell signaling events. Nat Immunol 12(7):655–662, ISSN 1529-2908

    Article  CAS  PubMed  Google Scholar 

  26. Klein T, Löschberger A, Proppert S, Wolter S, van de Linde S, Sauer M (2011) Live-cell dSTORM with SNAP-tag fusion proteins. Nat Methods 8(1):7–9, ISSN 1548-7091

    Google Scholar 

  27. Izeddin I, Specht CG, Lelek M, Darzacq X, Triller A, Zimmer C, Dahan M (2011) Super-resolution dynamic imaging of dendritic spines using a low-affinity photoconvertible actin probe. PLoS One 6(1):e15611

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Holden SJ, Uphoff S, Kapanidis AN (2011) Daostorm: an algorithm for high-density superresolution microscopy. Nat Methods 8(4):279–280, ISSN 1548-7091

    Article  CAS  PubMed  Google Scholar 

  29. Testa I, Wurm CA, Medda R, Rothermel E, von Middendorf C, Fölling J, Jakobs S, Schönle A, Hell SW, Eggeling C (2010) Multicolor fluorescence nanoscopy in fixed and living cells by exciting conventional fluorophores with a single wavelength. Biophys J 99(8):2686–2694, ISSN0006-3495

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Jones SA, Shim S-H, He J, Zhuang X (2011) Fast, three-dimensional super-resolution imaging of live cells. Nat Methods 8(6):499–505

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Shannon CE (1984) Communication in the presence of noise (reprinted). Proc IEEE 72(9):1192–1201, ISSN 0018-9219

    Article  Google Scholar 

  32. Dertinger T, Colyer R, Iyer G, Weiss S, Enderlein J (2009) Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI). Proc Natl Acad Sci U S A 106(52):22287–22292

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Huang F, Schwartz SL, Byars JM, Lidke KA (2011) Simultaneous multiple-emitter fitting for single molecule super-resolution imaging. Biomed Opt Express 2(5):1377–1393

    Article  PubMed Central  PubMed  Google Scholar 

  34. Wolter S, Schüttpelz M, Tscherepanow M, van de Linde S, Heilemann M, Sauer M (2010) Real-time computation of subdiffraction-resolution fluorescence images. J Microsc 237(1):12–22

    Article  CAS  PubMed  Google Scholar 

  35. Neubeck A, Van Gool L (2006) Efficient non-maximum suppression. In: ICPR’06: proceedings of the 18th international conference on pattern recognition. IEEE Computer Society, Washington, DC, pp 850–855. ISBN 0-7695-2521-0

    Google Scholar 

  36. Thomann DM (2003) Algorithms for detection and tracking of objects with super-resolution in 3D fluorescence microscopy. PhD thesis, ETH Zürich.

    Google Scholar 

  37. Křížek P, Raška I, Hagen GM (2011) Minimizing detection errors in single molecule localization microscopy. Opt Express 19(4):3226–3235

    Article  PubMed  Google Scholar 

  38. Thomann D, Dorn J, Sorger PK, Danuser G (2003) Automatic fluorescent tag localization II: improvement in superresolution by relative tracking. J Microsc 211(Pt 3):230–248, ISSN 0022-2720

    Article  CAS  PubMed  Google Scholar 

  39. Bobroff N (1986) Position measurement with a resolution and noise-limited instrument. Rev Sci Instrum 57(6):1152–1157

    Article  Google Scholar 

  40. Mlodzianoski MJ, Bewersdorf J (2009) 3D-resolution in FPALM/PALM/STORM. Biophys J 96(3 suppl 1):636–637, ISSN 0006-3495

    Article  Google Scholar 

  41. Aguet F, van de Ville D, Unser M (2005) A maximum-likelihood formalism for sub-resolution axial localization of fluorescent nanoparticles. Opt Express 13:10503–10522

    Article  PubMed  Google Scholar 

  42. Stallinga S, Rieger B (2010) Accuracy of the Gaussian point-spread-function model in 2D localization microscopy. Opt Express 18(24):24461–24476

    Article  CAS  PubMed  Google Scholar 

  43. Baddeley D, Cannell MB, Soeller C (2010) Visualization of localization microscopy data. Microsc Microanal 16(1):64–72

    Article  CAS  PubMed  Google Scholar 

  44. Zhang B, Zerubia J, Olivo-Marin JC (2007) Gaussian approximations of fluorescence microscope point-spread function models. Appl Optics 46(10):1819–1829

    Article  Google Scholar 

  45. Huang B, Wang W, Bates M, Zhuang X (2008) Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319(5864):810–813, ISSN 1095-9203

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Holtzer L, Meckel T, Schmidt T (2007) Nanometric three-dimensional tracking of individual quantum dots in cells. Appl Phys Lett 90(5):053902

    Article  Google Scholar 

  47. Juette MF, Gould TJ, Lessard MD, Mlodzianoski MJ, Nagpure BS, Bennett BT, Hess ST, Bewersdorf J (2008) Three-dimensional sub-100 nm resolution fluorescence microscopy of thick samples. Nat Methods 5(6):527–529, ISSN 1548-7091

    Article  CAS  PubMed  Google Scholar 

  48. Pavani SRP, Thompson MA, Biteen JS, Lord SJ, Liu N, Twieg RJ, Piestun R, Moerner WE (2009) Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function. Proc Natl Acad Sci U S A 106(9):2995–2999

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Shtengel G, Galbraith JA, Galbraith CG, Lippincott-Schwartz J, Gillette JM, Manley S, Sougrat R, Waterman CM, Kanchanawong P, Davidson MW, Fetter RD, Hess HF (2009) Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure. Proc Natl Acad Sci U S A 106(9):3125–3130

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Wolter S, Endesfelder U, van de Linde S, Heilemann M, Sauer M (2011) Measuring localization performance of superresolution algorithms on very active samples. Opt Express 19(8):7020–7033

    Article  PubMed  Google Scholar 

  51. Steinhauer C, Forthmann C, Vogelsang J, Tinnefeld P (2008) Superresolution microscopy on the basis of engineered dark states. J Am Chem Soc 130(50):16840–16841

    Article  CAS  PubMed  Google Scholar 

  52. Cordes T, Strackharn M, Stahl SW, Summerer W, Steinhauer C, Forthmann C, Puchner EM, Vogelsang J, Gaub HE, Tinnefeld P (2010) Resolving single-molecule assembled patterns with superresolution blink-microscopy. Nano Lett 10(2):645–651, PMID:20017533

    Article  CAS  PubMed  Google Scholar 

  53. van de Linde S, Kasper R, Heilemann M, Sauer M (2008) Photoswitching microscopy with standard fluorophores. Appl Phys B 93(4):725–731

    Article  Google Scholar 

  54. Bates M, Huang B, Dempsey GT, Zhuang X (2007) Multicolor super-resolution imaging with photo-switchable fluorescent probes. Science 317(5845):1749–1753

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Flors C, Ravarani CNJ, Dryden DTF (2009) Super-resolution imaging of DNA labelled with intercalating dyes. Chemphyschem 10(13):2201–2204

    Article  CAS  PubMed  Google Scholar 

  56. Weston KD, Carson PJ, DeAro JA, Buratto SK (1999) Single-molecule detection fluorescence of surface-bound species in vacuum. Chem Phys Lett 308:58–64

    Article  CAS  Google Scholar 

  57. Vogelsang J, Kasper R, Steinhauer C, Person B, Heilemann M, Sauer M, Tinnefeld P (2008) A reducing and oxidizing system minimizes photobleaching and blinking of fluorescent dyes. Angew Chem Int Ed 47(29):5465–5469

    Article  CAS  Google Scholar 

  58. Kottke T, van de Linde S, Sauer M, Kakorin S, Heilemann M (2010) Identification of the product of photoswitching of an oxazine fluorophore using Fourier transform infrared difference spectroscopy. J Phys Chem Lett 1(21):3156–3159

    Article  CAS  Google Scholar 

  59. Schafer FQ, Buettner GR (2001) Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Biol Med 30(11):1191–1212, ISSN 0891-5849

    Article  CAS  PubMed  Google Scholar 

  60. Sies H (1999) Glutathione and its role in cellular functions. Free Radic Biol Med 27(9–10):916–921

    Article  CAS  PubMed  Google Scholar 

  61. York AG, Ghitani A, Vaziri A, Davidson MW, Shroff H (2011) Confined activation and subdiffractive localization enables whole-cell palm with genetically expressed probes. Nat Methods 8(4):327–333, ISSN 1548-7091

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Hedde PN, Fuchs J, Oswald F, Wiedenmann J, Nienhaus GU (2009) Online image analysis software for photoactivation localization microscopy. Nat Methods 6(10):689–690, ISSN 1548-7091

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

We would like to thank the Biophotonics Initiative of the BMBF for financial support (Grants #13N11019 and #13N12507).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Wolter, S., Holm, T., van de Linde, S., Sauer, M. (2014). Data Analysis for Single-Molecule Localization Microscopy. In: Fornasiero, E., Rizzoli, S. (eds) Super-Resolution Microscopy Techniques in the Neurosciences. Neuromethods, vol 86. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-983-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-983-3_6

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-982-6

  • Online ISBN: 978-1-62703-983-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics