Skip to main content

Construction of Ligand-Responsive MicroRNAs that Operate Through Inhibition of Drosha Processing

  • Protocol
  • First Online:
Artificial Riboswitches

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1111))

Abstract

MicroRNAs (miRNAs) offer powerful tools for targeted gene silencing in almost all eukaryotes. These tools have received considerable attention for their utility in both fundamental genetic studies and as therapeutic agents. Rendering individual microRNAs responsive to endogenous or exogenously applied molecules (or ligands) can improve the stringency of silencing and can mediate autonomous control. This chapter describes the construction of ligand-responsive miRNAs that undergo reduced processing and subsequent gene silencing when bound by the recognized ligand. Following a simple set of rules, the engineered microRNAs can be readily modified to target different sequences and to bind different ligands. Individual miRNAs also can be incorporated into the same transcript for tunable, multi-gene silencing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  3. Gu S, Kay MA (2010) How do miRNAs mediate translational repression? Silence 1:11

    Article  PubMed Central  PubMed  Google Scholar 

  4. Alvarez-Garcia I, Miska EA (2005) MicroRNA functions in animal development and human disease. Development 132:4653–4662

    Article  CAS  PubMed  Google Scholar 

  5. Leisner M, Bleris L, Lohmueller J, Xie Z, Benenson Y (2010) Rationally designed logic integration of regulatory signals in mammalian cells. Nat Nanotechnol 5:666–670

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Dickins RA, Hemann MT, Zilfou JT, Simpson DR, Ibarra I, Hannon GJ, Lowe SW (2005) Probing tumor phenotypes using stable and regulated synthetic microRNA precursors. Nat Genet 37:1289–1295

    CAS  PubMed  Google Scholar 

  7. Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510

    Article  CAS  PubMed  Google Scholar 

  8. Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822

    Article  CAS  PubMed  Google Scholar 

  9. Hermann T, Patel DJ (2000) Adaptive recognition by nucleic acid aptamers. Science 287:820–825

    Article  CAS  PubMed  Google Scholar 

  10. Jenison RD, Gill SC, Pardi A, Polisky B (1994) High-resolution molecular discrimination by RNA. Science 263:1425–1429

    Article  CAS  PubMed  Google Scholar 

  11. Han J, Lee Y, Yeom KH, Nam JW, Heo I, Rhee JK, Sohn SY, Cho Y, Zhang BT, Kim VN (2006) Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell 125:887–901

    Article  CAS  PubMed  Google Scholar 

  12. Zeng Y, Cullen BR (2005) Efficient processing of primary microRNA hairpins by Drosha requires flanking nonstructured RNA sequences. J Biol Chem 280:27595–27603

    Article  CAS  PubMed  Google Scholar 

  13. Zeng Y, Yi R, Cullen BR (2005) Recognition and cleavage of primary microRNA precursors by the nuclear processing enzyme Drosha. EMBO J 24:138–148

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Beisel CL, Chen YY, Culler SJ, Hoff KG, Smolke CD (2011) Design of small molecule-responsive microRNAs based on structural requirements for Drosha processing. Nucleic Acids Res 39:2981–2994

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Petri S, Meister G (2013) siRNA design principles and off-target effects. Methods Mol Biol 986:59–71

    Article  CAS  PubMed  Google Scholar 

  16. An CI, Trinh VB, Yokobayashi Y (2006) Artificial control of gene expression in mammalian cells by modulating RNA interference through aptamer-small molecule interaction. RNA 12:710–716

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by North Carolina State University (start-up funds to CLB), the National Science Foundation (fellowship to RJB), the National Institutes of Health (RC1GM091298), and the Defense Advanced Research Projects Agency (HR0011-11-2-0002).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Beisel, C.L., Bloom, R.J., Smolke, C.D. (2014). Construction of Ligand-Responsive MicroRNAs that Operate Through Inhibition of Drosha Processing. In: Ogawa, A. (eds) Artificial Riboswitches. Methods in Molecular Biology, vol 1111. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-755-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-755-6_19

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-754-9

  • Online ISBN: 978-1-62703-755-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics