Skip to main content

Fast and Accurate Method to Purify Small Noncoding RNAs from Drosophila Ovaries

  • Protocol
  • First Online:
PIWI-Interacting RNAs

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1093))

Abstract

The recent development of High Throughput Sequencing technology has boosted the study of small regulatory RNA populations. A critical step prior to cloning and sequencing is purification of small RNA populations. Here, we report the optimization of an anion-exchange chromatography procedure in order to purify small regulatory RNAs bound on proteins. We developed this procedure to make it less time-consuming since our improved method no longer requires specific equipment and can easily be performed at the bench. We believe that our procedure will increase the robustness and accuracy of small RNA libraries in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bingham PM, Kidwell MG, Rubin GM (1982) The molecular basis of P-M hybrid dysgenesis: the role of the P element, a P-strain-specific transposon family. Cell 29:995–1004

    Article  CAS  PubMed  Google Scholar 

  2. Bregliano JC, Picard G, Bucheton A, Pelisson A, Lavige JM, L’Heritier P (1980) Hybrid dysgenesis in Drosophila melanogaster. Science 207:606–611

    Article  CAS  PubMed  Google Scholar 

  3. Castro JP, Carareto CM (2004) Drosophila melanogaster P transposable elements: mechanisms of transposition and regulation. Genetica 121:107–118

    Article  CAS  PubMed  Google Scholar 

  4. Chambeyron S, Bucheton A (2005) I elements in Drosophila: in vivo retrotransposition and regulation. Cytogenet Genome Res 110:215–222

    Article  CAS  PubMed  Google Scholar 

  5. Brennecke J, Aravin AA, Stark A, Dus M, Kellis M, Sachidanandam R, Hannon GJ (2007) Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell 128:1089–1103

    Article  CAS  PubMed  Google Scholar 

  6. Gunawardane LS, Saito K, Nishida KM, Miyoshi K, Kawamura Y, Nagami T, Siomi H, Siomi MC (2007) A slicer-mediated mechanism for repeat-associated siRNA 5′ end formation in Drosophila. Science 315:1587–1590

    Article  CAS  PubMed  Google Scholar 

  7. Brennecke J, Malone CD, Aravin AA, Sachidanandam R, Stark A, Hannon GJ (2008) An epigenetic role for maternally inherited piRNAs in transposon silencing. Science 322:1387–1392

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Chambeyron S, Popkova A, Payen-Groschene G, Brun C, Laouini D, Pelisson A, Bucheton A (2008) piRNA-mediated nuclear accumulation of retrotransposon transcripts in the Drosophila female germline. Proc Natl Acad Sci U S A 105:14964–14969

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Lau NC, Seto AG, Kim J, Kuramochi-Miyagawa S, Nakano T, Bartel DP, Kingston RE (2006) Characterization of the piRNA complex from rat testes. Science 313:363–367

    Article  CAS  PubMed  Google Scholar 

  10. Lau NC, Robine N, Martin R, Chung WJ, Niki Y, Berezikov E, Lai EC (2009) Abundant primary piRNAs, endo-siRNAs, and microRNAs in a Drosophila ovary cell line. Genome Res 19:1776–1785

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Grentzinger T, Armenise C, Brun C, Mugat B, Serrano V, Pelisson A, Chambeyron S (2012) piRNA-mediated transgenerational inheritance of an acquired trait. Genome Res 22:1877–1888

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank members of the Chambeyron laboratory for helpful discussion, Anna Warnet for advices, A. Pelisson and N. Lamb for reading the manuscript, M.C. Siomi and J. Brennecke for antibodies. Grentzinger was the recipient of a fellowship from French Ministère de la Recherche et de l’enseignement supérieur (MRT). Work in the Chambeyron laboratory is supported by grants from l’Association pour la Recherche sur le Cancer (ARC JR/AD/DMV-09/2/5007), ANR Jeunes chercheurs (ESSOR-JCJC-1604 01), and CNRS.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Grentzinger, T., Chambeyron, S. (2014). Fast and Accurate Method to Purify Small Noncoding RNAs from Drosophila Ovaries. In: Siomi, M. (eds) PIWI-Interacting RNAs. Methods in Molecular Biology, vol 1093. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-694-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-694-8_14

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-693-1

  • Online ISBN: 978-1-62703-694-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics